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Abstract: The effects of hydrogen blending ratio on the combustion performance of a double annular
counter-rotating swirler ( DACRS) combustor were investigated using steady-state Reynolds-averaged
Navier-Stokes (RANS) method coupled with the Realizable k-& turbulence model and flamelet generated
manifolds (FGM) combustion model. The simulations were based on GRI-Mech Il mechanism with sup-
plementary thermochemical calculations using Cantera to analyze the influence of hydrogen blending ratio
on the combustion characteristics and jet flow properties of methane-hydrogen mixed fuels. The operating
conditions included air mass flow rate of 0.447 6 kg/s at 680 K and 1.3 x 10° Pa, fuel temperature of
288 K, hydrogen molar fraction ranging from 0.6 to 1.0 (with increment of 0. 1), and corresponding e-
quivalence ratios of 0.414 to 0.481, while maintaining an adiabatic flame temperature of 1 800 K. The
results demonstrate that at hydrogen blending ratios of 0.6 and 0.7, combustion exhibits lean premixed

mode with stable flame characteristics. However, when the hydrogen blending ratio reaches more than
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0.8, DACRS burner flashback occurs, causing a transition to partially premixed/diffusion combustion

mode. This leads to failure of the double annular counter-rotating structure design, resulting in direct jet

flow characteristics with flow velocities increasing by 4 to 5 times. Increasing hydrogen blending ratio ele-

vates both adiabatic flame temperature and laminar flame speed, while jet density decreases from 5.0 to

1.2 kg/m’. The jet momentum flux ratio reaches its peak at a hydrogen blending ratio of 0. 82.

Key words: hydrogen blending ratio, DACRS combustor, numerical simulation, flashback
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Tab. 2 Operating condition table
- SR PRI T R BA S IE4(H LHV/ HIF P/

U e/ (m = 571) o/ (kg = s™") a ¢ (MJ - kg™") MW
1 88.34 0.010 81 0.6 0.481 61.06 0. 660
2 89.34 0.010 01 0.7 0.472 65.81 0.659
3 90. 62 0.008 94 0.8 0.458 73.34 0. 656
4 92.32 0.007 45 0.9 0.438 87.06 0.649
5 94.87 0.005 38 1.0 0.414 120. 00 0. 646
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Fig. 16 Influence of hydrogen blending ratio on fuel hole

jet momentum ratio and density
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Fig. 17 Influences of hydrogen blending ratio and equivalence
ratio on adiabatic flame temperature and laminar

flame speed of hydrogen and methane mixture
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