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Abstract: Driven by global " dual carbon" goals, the energy transition requires an efficient energy carri-
er to overcome the intermittency of renewable energy and bottlenecks in hydrogen storage and transporta-
tion. Ammonia (NH;) has emerged as one of the potential energy carriers, owing to its high hydrogen
storage density, ease of liquefaction storage and transportation, zero-carbon emissions, and compatibility
with existing infrastructure. The technological progress and challenges of entire ammonia energy value
chain were systematically reviewed. Large-scale application faced two primary bottlenecks. One was the
urgent need to replace traditional carbon-intensive production with green ammonia synthesis from renew-
able energy, and the other was the need to overcome the problem of efficient and clean utilization in pow-

er plants constrained by low flame speed, narrow flammable limit and complex NO, formation mecha-
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nisms of ammonia fuel. The results show that advanced combustion technologies, including swirl combus-

tion, MILD combustion, and co-firing with H,/CH,, can effectively enhance the stability and collabora-

tively control the pollutants. The technical feasibility of these approaches is being demonstrated in large-

scale marine engines, megawatt-class gas turbines, and co-firing applications in large-scale coal-fired

power plants. It is concluded that, driven by falling production costs for green ammonia and increasing

supportive policy intensity, ammonia energy represents a key strategic pathway to decarbonize the transport,

industrial, and power sectors by effectively linking renewable energy electricity to end-use applications.

Key words: ammonia energy, green ammonia, zero-carbon fuel, combustion characteristics, NO,, con-

trol, carbon peaking and carbon neutrality goals
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