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摘　 要:在全球“双碳”目标驱动的能源转型背景下ꎬ可再生能源的波动性与氢能储运瓶颈催生了对高效能源载体

的需求ꎮ 氨(ＮＨ３)凭借其高储氢密度、易于液化储运、零碳排放及成熟的基础设施兼容性ꎬ正成为极具发展潜力的

能源载体之一ꎮ 针对氨能源全价值链的技术进展与挑战ꎬ系统综述了其规模化应用主要面临的两大瓶颈:一是亟

需以可再生能源驱动的绿氨合成路径替代传统高碳工艺ꎻ二是氨燃料的低火焰速度、窄可燃极限及复杂的 ＮＯｘ生

成机理制约了其在动力装置中的高效清洁利用ꎮ 结果表明:通过旋流燃烧、ＭＩＬＤ 燃烧以及 Ｈ２ / ＣＨ４ 掺混等先进

燃烧技术ꎬ可有效提升燃烧稳定性并实现污染物协同控制ꎬ燃烧技术可行性已在大型船舶内燃机、兆瓦级燃气轮机

和大规模燃煤电厂掺烧等前沿工程示范中得到验证ꎮ 随着绿氨生产成本的持续下降和相关政策支持力度的增强ꎬ
氨能源作为连接可再生能源电力与终端应用的理想燃料ꎬ是实现交通、工业及电力等领域深度脱碳的关键战略

路径ꎮ

关　 键　 词:氨能源ꎻ绿氨ꎻ零碳燃料ꎻ燃烧特性ꎻＮＯｘ控制ꎻ“双碳”目标
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引　 言

在全球应对气候变化与实现可持续发展需求的

驱动下ꎬ构建以可再生能源为核心的零碳经济体系

已成为国际社会的战略共识ꎮ 然而ꎬ以风能、太阳能

为代表的可再生能源固有的间歇性与波动性对能源

系统的稳定运行构成严峻挑战ꎬ亟需高效、可持续的

长周期储能技术ꎮ 在此背景下ꎬ氢能作为理想的清

洁能源载体备受关注ꎬ但其低密度、高逃逸性及昂贵

的液化储运成本严重制约了规模化应用ꎮ
为突破上述瓶颈ꎬ氨凭借其高储氢质量分数、易

于液化及与现有基础设施兼容的特性ꎬ提供了一条

极具潜力的清洁能源载体技术路径[１]ꎮ 氨的体积

储氢密度是液氢的 １. ５ 倍ꎬ储运成本较低ꎬ且作为零

碳燃料直接利用时无 ＣＯ２ 排放[２ － ３]ꎮ 目前ꎬ氨能源

的规模化应用面临两大挑战:一是传统合成氨工艺

碳排放强度高ꎬ必须通过可再生能源驱动的绿氨合

成技术实现全生命周期脱碳ꎻ二是氨燃料的低燃烧

反应活性及易生成氮氧化物(ＮＯｘ)的特性ꎬ制约了

其在 内 燃 机、 燃 气 轮 机 等 动 力 装 置 中 的 高 效

应用[４]ꎮ
除上述理化特性外ꎬ氨作为能源载体的独特优

势更体现在其兼具传统工业基石与新兴能源载体的

双重角色:一方面是维系现代工业的支柱产品ꎬ不仅

用于制造氮肥ꎬ保障粮食安全ꎬ同时也是制造硝酸、
尼龙等关键化学品及工业制冷剂的基础原料ꎻ另一

方面ꎬ庞大且成熟的产业基础为氨作为能源载体的

推广应用提供了可行性ꎬ氨在海运、发电等领域的多

种技术发展路径已逐渐清晰ꎮ
为突破上述技术瓶颈ꎬ国际社会正从政策与技

术两方面加速布局ꎮ 欧盟通过立法将绿氨纳入零碳

燃料体系ꎬ日本则聚焦于氨在现有能源设施中的掺

混应用ꎬ而中国正依托碳市场与产业政策引导其规

模化部署ꎮ 这些举措共同确立了绿氨在未来零碳能

源体系中的战略价值ꎮ 因此ꎬ本文将围绕绿氨合成

路径、储运特性、关键燃烧技术及终端应用等方面展

开系统性综述ꎬ旨在为氨能源的技术发展与实现规

模化应用提供理论参考ꎮ

１　 国际碳约束与中国减排政策

１. １　 全球碳排放控制

全球气候治理正经历着前所未有的制度性变

革ꎮ ２０１５ 年«巴黎协定» [５] 的签署标志着国际社会

对温升控制的共同承诺ꎬ将全球平均气温升幅控制

在 ２ ℃以内ꎬ并努力控制在 １. ５ ℃以内[６]ꎮ «巴黎

协定»的相关要求加快推进了各国编制长期低碳排

放战略(ＬＴＳ)的工作进程[７]ꎻ截至 ２０１９ 年 ７ 月底ꎬ
以美国[８]、德国[９]、法国[１０]为代表的 １２ 个国家提交

了“２０５０ 碳中和” 的 ＬＴＳ 工作进程[１１]ꎻ截至 ２０２３
年ꎬ已有 １３８ 个国家提交碳中和 ＬＴＳꎬ涵盖全球 ８８％
的碳排放量和 ９０％的国内生产总值(ＧＤＰ)ꎮ 其中ꎬ
欧盟、美国、日本等主要经济体承诺在 ２０５０ 年实现

净零排放ꎬ中国也提出 ２０３０ 年前碳达峰、２０６０ 年前

碳中和的“双碳”目标ꎬ推动全球气候行动从政治共

识转向技术实践ꎮ
２０２０ 年 ９ 月ꎬ澳大利亚氨能源协会(ＡＥＡ Ａｕｓ￣

ｔｒａｌｉａ)分会举办了第二届“氨 ＝ 氢 ２. ０ 会议”ꎬ倡议

加强政府与行业之间的合作ꎬ并与日本和新加坡等

国家建立绿氨有关的能源安全合作机制[１２]ꎮ ２０２０
年 １１ 月 ２４ 日ꎬ欧盟第四次氢能网络会议提到要不

断增加绿氨的生产ꎬ并在其发布的“非生物源可再

生燃料”法案中明确了绿氢 /氨等零碳燃料在低碳

化经济体系中的重要地位[１３]ꎮ ２０２１ 年 ６ 月ꎬ日本政
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府在«实现 ２０２５ 年碳中和的绿色增长战略»中提

到ꎬ预计 ２０３０ 年发电所需的氨年度用量将达到 ３００
万 ｔꎬ到 ２０５０ 年将增至 ３ ０００ 万 ｔꎮ ２０２１ 年 １０ 月ꎬ日
本政府内阁在批准的«第六次能源基本计划»中预

计ꎬ到 ２０３０ 年在日本电力的供应结构中ꎬ氢能和氨

能占比 １％ [１４]ꎮ
１. ２　 中国双碳目标与能源转型策略

中国作为全球最大的能源消费国和碳排放国ꎬ
能源结构长期以化石能源为主导ꎬ煤炭、石油和天然

气约占一次能源消费总量的 ８０％ [１５]ꎬ能源结构转

型和减碳计划迫在眉睫[１６]ꎮ ２０２３ 年中国碳排放量

约占全球总量的 ３０％ [１７]ꎬ其中 ７０％ 来自煤炭相关

活动ꎬ仅燃煤发电和供热环节排放就占全国总量的

４５％以上ꎬ占全球燃煤排放的 １５％ ꎮ
近年来ꎬ我国密集出台一系列政策[１８ － ２１]:２０２２

年 １ 月«“十四五”新型储能发展实施方案»发布ꎬ拓
宽了氢 /氨储能应用领域ꎬ开展了依托可再生能源制

氢(氨)的储能试点示范ꎬ以满足长周期、多时间尺

度的储能应用需求ꎮ ２０２２ 年 ２ 月ꎬ«高耗能行业重

点领域节能降碳改造升级实施指南»提出ꎬ优化合

成氨原料结构ꎬ增加绿氢原料比例ꎬ进一步研发可再

生能源生产氨技术ꎬ降低合成氨生产过程的碳排放ꎮ
２０２２ 年 ８ 月ꎬ«工业领域碳达峰实施方案»明确要求

大力发展绿色智能船舶ꎬ加强氨 /氢等低碳零碳清洁

能源装备研发ꎬ扩大绿色低碳产品供给[２２]ꎮ ２０２４
年 ６ 月ꎬ«煤电低碳化改造建设行动方案(２０２４ －
２０２７ 年)»提出ꎬ２０２４ － ２０２７ 年ꎬ通过电解水制取绿

氢并合成绿氨ꎬ实施燃煤机组掺烧绿氨发电ꎬ以替代

部分燃煤ꎬ改造后的煤电机组应具有掺烧 １０％以上

绿氨的能力ꎮ ２０２４ 年 １２ 月ꎬ«加快工业领域清洁低

碳氢应用实施方案»明确指出ꎬ到 ２０２７ 年ꎬ中国清洁

低碳氢将在绿氨合成、合成甲醇、炼化等行业实现规

模化应用[２３]ꎮ
１. ３　 中国碳交易政策与技术导向

中国的政策体系通过经济激励与制度建设协同

推进ꎮ 经济层面ꎬ全国碳交易市场为绿氨生产提供

了直接的经济信号ꎬ但截至 ２０２１ 年 ４ 月ꎬ２９. １６ 元 / ｔ
的成交均价相对偏低ꎬ对高成本绿氨的激励效用尚

不充分ꎮ 制度层面ꎬ自 ２０１１ 年起颁布的一系列法规

逐步确立了配额管理体系ꎬ并于 ２０１７ 年正式启动全

国市场ꎬ辅以配额分配、市场拍卖及财税激励等多种

机制ꎮ 这些政策与«工业领域碳达峰实施方案»等

产业规划相结合ꎬ共同引导合成氨行业由传统的灰

氨向绿氨转型ꎮ
面对全球气候变化引发的贸易与技术格局重

塑ꎬ中国必须在保障社会经济稳定的前提下ꎬ对外加

强国际合作以推动碳税等政策协调[２４]ꎬ对内加快完

善碳交易市场ꎬ为实现“双碳”目标下的能源结构深

度转型提供稳固支撑[２５]ꎮ

２　 氨的工业应用

２. １　 氨的生产现状及发展趋势

现代工业合成氨技术源于哈伯 － 博世法

(Ｈａｂｅｒ￣Ｂｏｓｃｈ Ｐｒｏｃｅｓｓ) [２６]ꎮ 该工艺虽实现了氨的大

规模生产ꎬ但其固有的高碳属性ꎬ每生产 １ ｔ 氨约排

放 １. ５ ~ １. ６ ｔ ＣＯ２ꎬ使其成为占全球人为碳排放

１􀆰 ２％的重要排放源ꎮ 考虑到全球非绿氨产量预计

将从 １９８０ 年的近 １００ 万 ｔ 增长至 ２０５０ 年的 ４５０
万 ｔꎬ如图 １ 所示[２７]ꎬ合成氨生产过程的脱碳转型ꎬ
已成为实现全球碳中和的关键议题ꎮ

图 １　 全球氨产量随年份变化

Ｆｉｇ. １ Ｇｌｏｂａｌ ａｍｍｏｎｉａ ｐｒｏｄｕｃｔｉｏｎ ｏｖｅｒ ｔｉｍｅ

为应对此挑战ꎬ依据制氢路径划分的低碳合成

氨技术应运而生ꎬ主要可分为灰氨(基于化石燃料

制氢)、蓝氨(化石燃料制氢耦合碳捕集与封存)和
绿氨(利用可再生电力电解水制氢)ꎮ 其中ꎬ全生命

周期碳排放趋近于零的绿氨ꎬ被视为实现该行业脱

碳的根本性技术解决方案ꎬ预计到 ２０５０ 年其产量占

比将跃升至 ４５％ ꎮ 作为全球最大的合成氨生产国ꎬ
中国的现状凸显行业转型的紧迫性与脱碳的巨大潜

力ꎮ 中国合成氨消费量及其增长率趋势如图 ２
所示ꎮ
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图 ２　 中国合成氨消费量及增长率趋势图

Ｆｉｇ. ２ Ｔｒｅｎｄ ｃｈａｒｔ ｏｆ ｓｙｎｔｈｅｔｉｃ ａｍｍｏｎｉａ ｃｏｎｓｕｍｐｔｉｏｎ

ａｎｄ ｇｒｏｗｔｈ ｒａｔｅ ｉｎ Ｃｈｉｎａ

　 　

　 　 由图 ２ 可知ꎬ２０２１ 年其消费量高达 ５ ９８９. ６４ 万 ｔꎬ
但原料结构中化石能源占比较高ꎮ

然而ꎬ绿氨的规模化应用仍受限于三大核心制

约ꎬ分别是可再生能源的间歇性引起的成本波动、传
统哈伯 －博世工艺对动态氢源的适应性不足以及可

再生能源富集区与化工产业布局的地域错配ꎮ 因

此ꎬ行业内形成的技术路径共识为短期蓝氨过渡、长
期绿氨主导ꎬ并依托澳大利亚 － 日本绿氨供应链等

国际贸易网络ꎬ逐步构建全球化的零碳氢能经济ꎮ
图 ３ 为绿氨生产及使用全过程示意图ꎮ

图 ３　 绿氨生产及使用全过程示意图

Ｆｉｇ. ３ Ｒｏａｄｍａｐ ｏｆ ｇｒｅｅｎ ａｍｍｏｎｉａ ｐｒｏｄｕｃｔｉｏｎ ａｎｄ ｕｓｅ

２. ２　 氨的储存与能量特征

作为能源载体的可行性ꎬ主要体现在其成熟的

储运技术ꎮ 物理特性方面ꎬ氨在常温下仅需中等压

力即可液化(２０ ℃下约 ０. ８ ＭＰａ)ꎬ由此衍生出常温

加压(用于陆路运输)与低温常压( － ３３ ℃ꎬ用于海

运及大型仓储)两种成熟的储运技术方案ꎬ并形成

了覆盖全球的立体化运输网络ꎮ 能量特性则呈现出

双重性ꎬ取决于对比的基准:一方面ꎬ氨是高密度的

储氢介质(质量百分比为 １７. ６％ ) [２８]ꎬ其在作为“储
氢介质”(即对比液氢)时优势明显ꎬ其理论体积能

量密度(约 ４. ３２ (ｋＷ􀅰ｈ) / Ｌ)显著高于需深冷储存

的液氢(１. ５５ (ｋＷ􀅰ｈ) / Ｌ)ꎻ另一方面ꎬ在作为“直接

燃料”(即对比化石燃料)时ꎬ其挑战也同样突出ꎮ
图 ４ 直观地对比了多种能源的单位质量能量和能量

密度ꎮ 传统化石燃料(如汽油、柴油)位于图的右上

象限ꎬ而氨(燃料电池)的单位质量能量和能量密度

均低于前者[２９]ꎮ 此外ꎬ氨的燃烧特性也带来了挑

战ꎮ 氨燃料的层流火焰速度较低ꎬ导致了点火困难

和火焰不稳定等问题ꎬ这需要通过旋流、掺混等技术

来解决ꎮ

图 ４　 不同能量储存的单位质量能量和能量密度

Ｆｉｇ. ４ Ｕｎｉｔ ｍａｓｓ ｅｎｅｒｇｙ ａｎｄ ｅｎｅｒｇｙ ｄｅｎｓｉｔｙ ｏｆ
ｄｉｆｆｅｒｅｎｔ ｅｎｅｒｇｙ ｓｏｕｒｃｅ ｓｔｏｒａｇｅ
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氨储运的最大优势在于服务于全球化肥产业的

成熟液氨物流体系已经建成ꎬ全球主要港口普遍配

有容量高达 ４ 万 ｔ 的大型储罐及专用装卸设施ꎮ 因

此ꎬ高体积能量密度与现成的低成本物流基础设施

构成了氨能源的核心优势ꎬ使其在内燃机、燃气轮机

等动力设备上展现出巨大的应用潜力ꎮ

２. ３　 氨能源全流程能耗与碳排放特性

为科学评估不同合成氨技术路线的环境影响ꎬ

并响应工信部 ２０２３ 年«合成氨行业规范条件» [３０]等

政策要求ꎬ生命周期评价(ＬＣＡ)方法[３１] 被用于核算

合成氨全过程碳足迹ꎮ 李淳[３２] 的研究为煤制、天然

气制和电解水制 ３ 种主流路线提供了清晰的对比基

准ꎮ 传统的煤制与天然气制合成氨在 ＬＣＡ 框架下

均属高碳的“灰氨”范畴ꎬ其生命周期涉及化石燃料

的开采、运输[３３] 及燃烧等多个高排放阶段ꎬ碳足迹

显著ꎮ 基于可再生电力电解水制氢[３４] 的“绿氨”路

线ꎬ从源头上切断了对化石燃料的依赖ꎬ其生命周期

显著简化ꎬ碳足迹极低ꎬ代表了合成氨技术的可持续

发展方向ꎮ

通过对煤制合成氨、天然气制合成氨、电解水

制合成氨所呈现的全过程碳足迹数据分析可得ꎬ

合成氨行业的脱碳并非对现有工艺的修补ꎬ其核心

是从依赖化石原料转向绿色电力ꎬ这也是唯一能

使该行业与国家 “双碳” 战略目标相契合的技术

路径ꎮ

２. ４　 经济性分析

绿氨的经济性是决定其市场渗透率的关键

因素ꎮ ２０２０ ~ ２０４０ 年绿氨的生产成本及预期估计

如图 ５ 所示[３５]ꎮ 长期成本预测显示ꎬ绿氨具备显著

的降本潜力ꎬ预计到 ２０４０ 年ꎬ其生产成本将降至

１ ５８３ ~ ３ ４５３元 / ｔꎬ届时有望对采用传统化石能源制

造的灰氨形成成本优势ꎮ

当前ꎬ绿氨生产成本主要由可再生电力成本与设

备投资摊销构成ꎮ 生产 １ ｔ 绿氨约需消耗 １０ ５００ ~

１２ ０００ ｋＷ􀅰ｈ 的电力ꎮ以一个年产 ２ 万 ｔ 的绿氨系统

为例ꎬ在风光电力成本为 ０. １６ 元 / (ｋＷ􀅰ｈ)的理想条

件下ꎬ综合考虑电解槽、储氢、储电及空分等设施投

资ꎬ估算的氨生产成本约为 ３ ８００ 元 / ｔꎬ绿氨合成成

本参数如表 １ 所示ꎮ

图 ５　 ２０２０ ~ ２０４０ 年绿氨的生产成本及预期估计

Ｆｉｇ. ５ Ｇｒｅｅｎ ａｍｍｏｎｉａ ｐｒｏｄｕｃｔｉｏｎ ｃｏｓｔ ａｎｄ ｆｏｒｅｃａｓｔ

ｅｓｔｉｍａｔｉｏｎ ｆｒｏｍ ２０２０ ｔｏ ２０４０

表 １　 绿氨合成成本参数

Ｔａｂ. １ Ｃｏｓｔ ｐａｒａｍｅｔｅｒｓ ｆｏｒ ｇｒｅｅｎ ａｍｍｏｎｉａ ｓｙｎｔｈｅｓｉｓ

参　 数 数　 值

氨合成装置年产量 ｍＮＨ３ / ｋｇ ２ ×１０７

氨分子摩尔质量 ＭＮＨ３ / (ｇ􀅰ｍｏｌ －１) １７

氢分子的摩尔质量 ＭＨ２ / (ｇ􀅰ｍｏｌ －１) ２

气体常数 Ｒ / (Ｊ􀅰ｍｏｌ －１􀅰Ｋ －１) ８. ３１４

氢气输送温度 Ｔ / Ｋ ３００

氢气输送压力 ｐ / ｋＰａ １０１. ３

氢气需求量 ｍＨ２ / ｋｇ ５. ９０ ×１０６

氢气每年需要的摩尔量 ｎＨ２ / ｍｏｌ ２. ９４ ×１０９

氨合成每天消耗氢气体积 Ｖｄ / (Ｎｍ３􀅰ｄ －１) １. ９７ ×１０５

氨合成每天消耗氢气体积 Ｖｄ / (Ｎｍ３􀅰ｄ －１) １. ９７ ×１０５

然而ꎬ绿氨成本对电价极为敏感ꎬ谭厚章等

人[３６]的分析表明ꎬ当电价降至约 ０. １０２ 元 / (ｋＷ􀅰ｈ)
的临界点以下时ꎬ其燃料成本便可低于灰氨和天

然气ꎬ当使用可再生能源富余电力(电价为 ０. １６
元 / (ｋＷ􀅰ｈ))生产绿氨时ꎬ需要碳价达到 １７０ 元 / ｔ
才可以实现 ＣＯ２ 对灰氨和天然气的替代ꎬ如图 ６ 所

示ꎮ 技术路线上ꎬ高温电解( ＳＯＥＣ)则被认为是最

具成本优势的电解水技术[３７]ꎮ
液氨陆路运输方式经济型对比如图 ７ 所示ꎮ 不

同方式运输 １ ｋｇ 氢 /氨的成本对比如表 ２ 所示ꎮ 由

图 ７ 和表 ２ 可知ꎬ除生产成本外ꎬ氨在物流环节也展

现出显著的经济优势ꎬ其长距离管道或海运成本均

远低于直接输送氢气ꎬ确立了“以氨运氢”的可行

性[３８ － ４０]ꎮ 因此ꎬ推动绿氨产业化的核心战略在于:
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通过技术创新(如发展 ＳＯＥＣ)降低设备投资与能

耗ꎬ同时最大化利用低成本可再生电力 (如 “弃

电”) [４１]ꎬ以使其逐步具备市场竞争力ꎬ加速能源经

济的脱碳进程ꎮ

图 ６　 绿氨、煤、天然气、灰氨燃料成本随

电价的变化趋势

Ｆｉｇ. ６ Ｖａｒｉａｔｉｏｎ ｔｒｅｎｄ ｏｆ ｆｕｅｌ ｃｏｓｔｓ ｏｆ ｇｒｅｅｎ ａｍｍｏｎｉａꎬ

ｃｏａｌꎬ ｎａｔｕｒａｌ ｇａｓꎬ ａｎｄ ｇｒｅｙ ａｍｍｏｎｉａ ｗｉｔｈ

ｅｌｅｃｔｒｉｃｉｔｙ ｐｒｉｃｅｓ

图 ７　 液氨陆路运输方式经济性对比

Ｆｉｇ. ７ Ｅｃｏｎｏｍｉｃ ｃｏｍｐａｒｉｓｏｎ ｏｆ ｌｉｑｕｉｄ ａｍｍｏｎｉａ

ｂｙ ｌａｎｄ ｔｒａｎｓｐｏｒｔａｔｉｏｎ

表 ２　 不同运输方式运输 １ ｋｇ 氢 /氨的成本对比(元)

Ｔａｂ. ２ Ｃｏｓｔ ｃｏｍｐａｒｉｓｏｎ ｏｆ １ ｋｇ ｈｙｄｒｏｇｅｎ / ａｍｍｏｎｉａ

ｔｒａｎｓｐｏｒｔｅｄ ｂｙ ｄｉｆｆｅｒｅｎｔ ｔｒａｎｓｐｏｒｔａｔｉｏｎ ｍｏｄｅｓ (ｙｕａｎ)

运输方式
运输距离 / ｋｍ

２００ ~ ２ ０００ ２ ０００ ~ ３ ０００

管道运输氢 ０. ７３ ~ ９. ４５ ９. ４４ ~ １５. ２６

轮船运输氢 ６. ５４ ~ ８. ００ ８. ００ ~ ９. ４５

管道运输氨 ０. ７３ ~ ５. ８１ ５. ８１ ~ ７. ２７

轮船运输氨 ０. ７３ ~ １. ４５ ０. ７３ ~ １. ４５

２. ５　 氨的安全性

将氨作为规模化能源载体ꎬ必须正视并有效管

控其安全与环境风险ꎮ 在人体健康层面ꎬ氨是一种

有毒且具腐蚀性的气体ꎬ其强烈的刺激性气味(气
味阈值 ５ × １０ － ６ ~ ５０ × １０ － ６)可作为泄漏警示ꎬ但高

浓度接触仍会对眼、皮肤和呼吸道造成严重化学损

伤[４２]ꎬ因此职业安全标准对其浓度上限有严格规

定ꎮ 在物理安全层面ꎬ氨不易点燃ꎬ但当其与空气混

合的体积分数 Ｖ / Ｖ 达到爆炸极限(１６％ ~２５％ )后ꎬ
遇火源仍有爆炸风险ꎮ 在生态环境层面ꎬ氨泄漏会

造成土壤酸化ꎬ也是形成酸雨和二次颗粒物 ＰＭ ２. ５
的前体物ꎮ 此外ꎬ氨的逸散还会通过在环境中转化

生成强效温室气体氧化亚氮(Ｎ２Ｏ)ꎬ从而产生间接

增温效应ꎮ

３　 氨燃料及其基础燃烧特性

氨作为一种极具潜力的零碳燃料ꎬ其在动力系

统中的应用前景取决于能否有效应对其燃烧反应活

性低与含氮污染物控制难这两大内在挑战ꎮ 与传统

碳氢燃料相比ꎬ氨的低层流火焰速度、窄可燃极限及

高点火能等特性共同导致了其火焰稳定性差、点火

困难等工程难题ꎮ 同时ꎬ氨燃烧虽无碳排放ꎬ但其含

有的氮元素会根据化学当量比 φ 的不同ꎬ分别在贫

燃、富燃和化学计量比条件下ꎬ转化为 ＮＯｘ、逃逸

ＮＨ３ 以及 Ｎ２Ｏ 等污染物[４３]ꎬ形成了复杂的排放控

制窗口ꎮ
３. １　 层流火焰传播特性

氨燃烧最根本挑战源于层流火焰速度(ＳＬ)较

低ꎬ氨 /空气预混火焰层流燃烧速度随当量比变化趋

势如图 ８ 所示ꎮ 研究表明[４４]ꎬ常压下 ＮＨ３ /空气预

混火焰的峰值 ＳＬ(当量比 １. １ 附近)仅为 ７ ｃｍ / ｓꎬ约
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为同条件下甲烷的 １ / ５ꎬ且该值随压力升高而显著

降低ꎬ这主要是因为压力升高促进了链终止反应ꎬ消
耗了对火焰传播至关重要的 ＮＨ２ 自由基ꎮ 较低燃

烧速率直接导致一系列稳定性问题ꎬ包括更长的熄

火距离[４５]和更低的火焰拉伸率[４６]ꎮ 熄火距离的增

大意味着火焰更易受壁面热损失影响而吹熄ꎬ而火

焰拉伸率的降低则表明其抵抗流动应变与变形的能

力更弱ꎮ 并且ꎬＮＨ３ /空气混合物的有效刘易斯数

(Ｌｅｗｉｓ Ｎｕｍｂｅｒ)通常大于 １ꎬ火焰在本质上倾向于

热扩散稳定ꎬ这进一步抑制因火焰锋面褶皱带来的

燃烧强化效应ꎮ 这些内在特性共同导致氨火焰在湍

流中极易发生局部熄灭ꎬ其缓慢的传播速率甚至会

导致其火焰形态在重力场中因浮力作用而发生严重

扭曲ꎬ呈现不规则的“水母状”形态[４７]ꎬ如图 ９ 所示ꎬ
图中 ｐ 代表压力ꎬｔ 代表燃烧时间ꎮ

图 ８　 氨 /空气预混火焰层流燃烧速度随当量比变化趋势

Ｆｉｇ. ８. Ｖａｒｉａｔｉｏｎ ｔｒｅｎｄ ｏｆ ａｍｍｏｎｉａ / ａｉｒ ｐｒｅｍｉｘｅｄ ｆｌａｍｅ

ｌａｍｉｎａｒ ｂｕｒｎｉｎｇ ｖｅｌｏｃｉｔｙ ｗｉｔｈ ｅｑｕｉｖａｌｅｎｃｅ ｒａｔｉｏ

图 ９　 氨 /空气预混火焰燃烧图像ꎬｐ ＝ ０. １ ＭＰａꎬｔ ＝ １００ ｍｓ

Ｆｉｇ. ９ Ｂｕｒｎｉｎｇ ｉｍａｇｅ ｏｆ ａｍｍｏｎｉａ / ａｉｒ ｐｒｅｍｉｘｅｄ ｆｌａｍｅｓ

ａｔ ｐ ＝ ０. １ ＭＰａꎬｔ ＝ １００ ｍｓ

３. ２　 湍流射流火焰基本特性

将氨燃料应用于实际工程ꎬ必然要面对湍流射

流燃烧的复杂问题ꎬ因此阐明纯氨射流火焰的稳定

性边界与内在机理至关重要ꎮ 实验已证实纯氨射流

火焰的稳定燃烧可行ꎬ但其稳定极限非常有限ꎮ

Ｈａｙａｋａｗａ 等人[５１] 的研究表明ꎬ在一个 １４ ｍｍ
本生灯上ꎬ于 ０. ２ ~ ０. ３ ＭＰａ 压力下可以稳定燃烧ꎬ
并获得火焰前沿光滑、发出橙色化学发光的稳定纯

氨火焰ꎬ如图 １０ 所示ꎮ

图 １０　 当量比条件下 ＮＨ３ /空气预混火焰燃烧图像

Ｆｉｇ. １０ Ｂｕｒｎｉｎｇ ｉｍａｇｅ ｏｆ ａｍｍｏｎｉａ / ａｉｒ ｐｒｅｍｉｘｅｄ

ｆｌａｍｅ ａｔ ｓｔｏｉｃｈｉｏｍｅｔｒｉｃ ｃｏｎｄｉｔｉｏｎ

然而ꎬ其稳定燃烧的窗口对出口速度和压力变

化极为敏感ꎬ增加压力会导致火焰高度显著降低ꎬ需
要在合适的速度区间氨 /空气火焰才能够稳定燃烧ꎬ
反映了其燃烧特性对边界条件的依赖性强ꎮ 该不稳

定性的内在机理可归因于其火焰结构对湍流拉伸的

敏感性ꎮ 通过对 ＮＨ 和 ＯＨ 自由基的平面激光诱导

荧光(ＰＬＩＦ)诊断发现[５２ － ５３]ꎬ氨火焰的内层为燃料

消耗反应区ꎬ其中 ＯＨ 自由基的内边缘与 ＮＨ 层重

合ꎮ 随着湍流强度(以 Ｋａｒｌｏｖｉｔｚ 数ꎬＫａ 表征)的增

加ꎬ火焰反应区(ＮＨ 层)会发生从平滑到褶皱ꎬ再到

局部断裂的转变ꎬ如图 １１ ~图 １３ 所示ꎮ

图 １１　 氨 /空气典型 ＯＨ￣ＰＬＩＦ 图像

Ｆｉｇ. １１ Ａ ｔｙｐｉｃａｌ ＯＨ － ＰＬＩＦ ｉｍａｇｅ ｏｆ ａｍｍｏｎｉａ / ａｉｒ
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图 １２　 ＮＨ ＰＬＩＦ、ＯＨ ＰＬＩＦ 和 ＯＨ 内边缘与 ＮＨ 重合图像

Ｆｉｇ. １２ Ｓｎａｐｓｈｏｔｓ ｏｆ ＮＨ ＰＬＩＦꎬ ＯＨ ＰＬＩＦ ａｎｄ ｉｎｎｅｒ

ｅｄｇｅ ｏｆ ＯＨ ｏｖｅｒｌａｉｄ ｏｎ ＮＨ

图 １３　 ＮＨ￣ＰＬＩＦ 和温度分布的同时单次拍摄图像

Ｆｉｇ. １３ Ｓｉｍｕｌｔａｎｅｏｕｓ ｓｉｎｇｌｅ￣ｓｈｏｔ ｉｍａｇｅｓ ｏｆ ＮＨ￣ＰＬＩＦ ａｎｄ

ｔｅｍｐｅｒａｔｕｒｅ ｄｉｓｔｒｉｂｕｔｉｏｎ ｆｏｒ ｔｈｅ ｓｅｌｅｃｔｅｄ ｃａｓｅｓ

由图 １１ ~ １３ 可知ꎬ在高 Ｋａ 数的火焰中ꎬ火焰锋

面近燃烧器出口处变得更薄、更褶皱ꎬ而下游出现增

厚现象ꎮ 同时ꎬ预热区因湍流传热传质的增强而显

著增宽ꎬ温度梯度降低ꎬ且湍涡旋对其影响大于对

ＮＨ 层的影响ꎮ 最终ꎬ强烈的湍流拉伸会导致反应

区不连续ꎬ即发生局部熄灭ꎬ从根本上解释了纯氨湍

流火焰难以稳定的原因ꎮ

３. ３　 污染物生成分析

燃烧污染物控制是氨清洁利用的核心科学问

题ꎬ其复杂性源于多条并存的 ＮＯｘ生成路径ꎮ 目

前ꎬ氨燃烧的 ＮＯｘ生成路径可归纳为 ３ 类:燃料型

(ＨＮＯ 路径)、ＮＮＨ 路径和热力型ꎮ 其中ꎬ燃料型

ＮＯｘ占据主导地位ꎬ其核心机理[５４ － ５５] 在于ꎬＮＨ３ 在

ＯＨ 等自由基作用下经脱氢反应生成 ＮＨｉ (ＮＨ３ꎬ
ＮＨ)ꎬ随后通过 ＨＮＯ 中间体进一步氧化为 ＮＯꎮ 同

时ꎬＮＮＨ 路径则是通过 Ｎ２ 与 Ｈ 原子反应生成 ＮＮＨ
中间体(Ｎ２ ＋ Ｈ→ＮＨＨ)ꎬ随后被 Ｏ 原子氧化生成

ＮＯ 的过程ꎬ该路径在氨火焰富含 Ｈ 自由基的特性

下通常被视为重要的 ＮＯｘ 生成补充机制ꎮ 尽管存

在多条路径ꎬ但由于主导的燃料型路径高度依赖于

ＯＨ 自由基浓度ꎬ因此 ＮＯｘ的生成峰值通常出现在

ＯＨ 浓度最高的贫燃区域(当量比 φ≈０. ９) [５６]ꎮ 而

在浓燃条件下ꎬＯＨ 自由基浓度的降低则会显著抑

制此路径ꎬ从而导致 ＮＯ 生成量降低[５７]ꎮ 相比大于

１ ８００ Ｋ 的高温下ꎬ由于氨火焰温度较低ꎬ空气中 Ｎ２

导致的热力型 ＮＯｘ贡献通常可忽略不计ꎮ

当氨与碳氢 /氢气燃料掺混时ꎬ燃烧室内的反应

路径会因燃料组分和中间产物池的改变而变得更复

杂ꎬＮＯｘ 排放随氨掺混比例 ( ｘＮＨ３ ) 呈非线性变

化[５８]ꎮ Ｘｉａｏ 等人[５９]的数值模拟表明ꎬ随着 ＮＨ３ 比例

的增加ꎬＣＯ 和 ＣＯ２ 摩尔分数呈单调下降趋势ꎬ验证了

掺氨的降碳效果ꎮ ＮＨ３ / ＣＨ４ 共燃产生的 ＮＯｘ甚至可

能高于纯氨或纯甲烷燃烧ꎬＮＯｘ 峰值主要出现在中

高等掺混比(ｘＮＨ３≈０. ６ ~０. ８)区域ꎬ如图 １４ 所示ꎮ
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图 １４　 ＮＨ３ / ＣＨ４ /空气燃烧一维数值排放结果

Ｆｉｇ. １４ Ｏｎｅ￣ｄｉｍｅｎｓｉｏｎａｌ ｎｕｍｅｒｉｃａｌ ｅｍｉｓｓｉｏｎ ｒｅｓｕｌｔｓ
ｏｆ ＮＨ３ / ＣＨ４ / ａｉｒ ｃｏｍｂｕｓｔｉｏｎ

　 　
Ｏｋａｆｏｒ 等人[６０] 通过在微型燃气轮机中的实验

与模拟也揭示了类似的复杂性ꎬ即 ＮＯｘ的生成与局

部温度场和当量比的耦合关系紧密ꎬ如图 １５ 所示ꎮ
图中 φｐｒｉ表示一次正当量比ꎬφｏｖｅｒａｌｌ表示全局当量比ꎬ
ｘＮＯ表示 ＮＯ 的排放量ꎮ

图 １５　 ＣＨ４ / ＮＨ３ －空气两级非预混燃烧温度 / ＮＯ 的 ２Ｄ 分布

Ｆｉｇ. １５ Ｃｏｍｐｕｔｅｄ ２Ｄ ｐｒｏｆｉｌｅｓ ｏｆ ｔｅｍｐｅｒａｔｕｒｅ ａｎｄ ｍｏｌｅ
ｆｒａｃｔｉｏｎ ｏｆ ＮＯ ｉｎ ｔｗｏ￣ｓｔａｇｅ ｎｏｎ￣ｐｒｅｍｉｘｅｄ
ｃｏｍｂｕｓｔｉｏｎ ｏｆ ＣＨ４ / ＮＨ３ / ａｉｒ ｍｉｘｔｕｒｅｓ

其中氨在燃料总能量中的占比为 ０. ２ꎬ 而

Ｓｏｍａｒａｔｈｎｅ 等人[６１] 的模拟进一步指出ꎬＮＯｘ排放与

压力也存在复杂的负相关性ꎮ
综上所述ꎬ对 ＮＯｘ生成机理的深入理解ꎬ揭示

了氨清洁燃烧的核心问题ꎬ通过浓燃或分级燃烧等

策略抑制 ＮＯｘ的生成ꎬ普遍会面临未燃 ＮＨ 逃逸的

权衡问题ꎮ 目前ꎬ该问题主要依赖于成本高昂的选

择性催化还原后处理技术(Ｓｅｌｅｃｔｉｖｅ Ｃａｔａｌｙｔｉｃ Ｒｅｄｕｃ￣
ｔｉｏｎꎬＳＣＲ)后处理技术ꎮ 因此ꎬ需探索燃烧过程与催

化反应协同的先进技术ꎬ例如开发高效的非贵金属

催化剂ꎬ并结合 ＣＦＤ 优化燃烧室设计ꎬ以实现高效

燃烧与污染物的协同控制ꎮ

４　 氨燃料燃烧技术

当前ꎬ氨燃料燃烧研究多集中于特定工业燃烧

器的应用层面ꎮ 然而ꎬ实际燃烧系统多处于湍流状

态ꎬ湍流效应会显著改变燃烧速率和吹熄极限等关

键性能[６２]ꎮ 火焰的宏观燃烧表现是氨固有的燃料

特性(如层流火焰速度、可燃极限等)与复杂湍流流

动相互作用的结果[６３ － ６５]ꎮ 鉴于氨燃料在实际应用

中面临的点火困难、稳燃范围窄及 ＮＯｘ 排放量高等

本质缺陷ꎬ工业界已发展出多项针对性的燃烧强化

策略:利用旋流燃烧技术强化气动稳燃、通过温和燃

烧技术实现低氮排放以及开发液氨燃烧技术以适配

其高密度存储特性ꎮ 这些关键技术构成了克服氨燃

料基础燃烧限制、实现高效动力转换的工程基石ꎮ
４. １　 旋流燃烧技术

旋流燃烧是克服氨燃料低反应活性、燃烧不稳

及排放窗口窄等挑战的核心技术方向ꎮ 该技术通过

强化燃料与空气的混合ꎬ并利用中心回流区锚定火

焰ꎬ以提升燃烧效率和稳定性[６６ － ６８]ꎮ
Ｈａｙａｋａｗａ 等人[６９] 发现ꎬ增加旋流数可拓宽

稳定边界ꎬ但氨火焰形态仍长于甲烷火焰ꎬ参见图 １６ꎮ

图 １６　 相同工况下 ＮＨ３ /空气与 ＣＨ４ /空气的火焰形态对比

Ｆｉｇ. １６ Ｍｏｒｐｈｏｌｏｇｉｃａｌ ｃｏｍｐａｒｉｓｏｎ ｏｆ ｓｔａｂｌｅ ＮＨ３ / ａｉｒ ａｎｄ
ＣＨ４ / ａｉｒ ｆｌａｍｅｓ ｕｎｄｅｒ ｔｈｅ ｓａｍｅ ｏｐｅｒａｔｉｎｇ ｃｏｎｄｉｔｉｏｎｓ
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氨火焰的 ＮＯｘ 排放特性与当量比密切相关:贫
燃时 ＮＯｘ高ꎬ富燃时 ＮＯｘ急剧降低但 ＮＨ３ 逃逸增

加ꎮ Ｏｋａｆｏｒ 等人[７０] 在分级燃烧中也观察到 ＮＯｘ生

成与 ＮＨ３逃逸的权衡效应ꎬ即富燃主燃区抑制 ＮＯｘ
后ꎬ逃逸的 ＮＨ３ 会在二次燃烧区被氧化ꎮ

为改善氨燃烧稳定性和排放ꎬ与 Ｈ２ 或 ＣＨ４ 等

高活性燃料掺混是主流策略ꎮ Ｈｕｓｓｅｉｎ 等人[７１] 发

现ꎬ掺氢可将火焰从不稳定的“Ｖ”型转变为稳定的

“Ｍ” 型ꎬ但氢气的高反应活性也带来了回火风

险[７２]ꎮ Ｚｈａｎｇ 等人[７３]则证实ꎬ掺混 ＣＨ４同样能扩大

吹熄极限ꎮ 此外ꎬ燃料掺混也改变了污染物路径ꎬ
Ｐｕｇｈ 等人[７４] 指出ꎬ在 ＮＨ３ / Ｈ２ 燃烧中ꎬ通过注水或

加压虽可降低 ＮＯｘ生成ꎬ但也会增加 ＮＨ３ 逃逸ꎮ

采用等离子体等前沿辅助技术是另一强化氨燃

烧的路径ꎮ Ｃｈｏｅ 等人[７５] 的研究表明ꎬ非平衡等离

子体可延长稀燃吹熄极限并降低 ＮＯｘ生成ꎮ Ｔａｎｇ

等人[７６] 则利用滑行弧放电ꎬ在当量比低于 ０. ７６ 的

稀燃工况下将 ＮＯｘ显著抑制在 １００ × １０ － ６ 以下ꎬ展

现了滑行弧放电技术在拓宽稳定边界和控制排放上

的优势ꎮ
稳定性改善的根本机理在于对火焰吹熄极限的

拓展ꎮ 强旋流形成的内部回流区是核心稳定机制ꎮ
Ｋｏｂａｙａｓｈｉ 等人[７７] 指出ꎬ该区域通过输运高温产物

和活性自由基至火焰根部ꎬ拓宽火焰稳定极限ꎮ 火

焰稳定边界受到多种因素综合影响ꎬＬｅｅ 等人[７８] 研

究证实ꎬ全局当量比与流速共同决定了火焰形态与

拉伸特征ꎬ如图 １７ 所示ꎮ 此外ꎬ燃烧器的几何结构

直接影响回流区特性ꎬ而环境压力则通过改变火焰

厚度与火焰速度进一步影响稳定性ꎮ

图 １７　 火焰稳定极限

Ｆｉｇ. １７ Ｆｌａｍｅ ｓｔａｂｉｌｉｔｙ ｌｉｍｉｔ

４. ２　 温和燃烧技术

中度或强低氧稀释温和燃烧是一种应对氨燃料

挑战的新型燃烧策略[７９]ꎮ 该模式通过高度预热和

强稀释ꎬ在高温、低氧环境下实现均匀、无火焰锋面

的温和燃烧ꎬ能有效抑制 ＮＯｘ生成[８０]ꎮ 这些特性恰

好弥补了氨反应活性低、易生成 ＮＯｘ的缺陷ꎬ使其

成为极具潜力的技术路径[８１]ꎮ
研究证实ꎬ纯氨温和燃烧具有低 ＮＯｘ潜力[８２]ꎮ

数值模拟揭示了其机理与权衡关系ꎬ通过降低壁温

或增加氮气稀释可使反应区更接近分布式燃烧状

态ꎬ从而在抑制 ＮＯｘ的同时ꎬ可能引起 Ｎ２Ｏ 排放的

增加[８３]ꎮ Ａｒｉｅｍｍａ 等人[８４]发现ꎬ在温和燃烧模式下

注水ꎬ可在不影响燃烧稳定性的前提下有效降低

ＮＯｘꎬ尤其是在非预混工况下ꎬ形成的分层富氨区有

助于 ＮＯｘ还原ꎮ

对于 ＮＨ３ 与 ＣＨ４ / Ｈ２ 掺混燃烧ꎬ温和燃烧模式

因特有的烟气内循环稀释作用ꎬ展现出优于传统旋流

的 ＮＯｘ抑制效果[８５]ꎮ Ｍｏｕｓａｖｉ 等人[８６]和 Ｆｅｒｒａｒｏｔｔｉ 等

人[８７]研究表明ꎬ在与合成气混燃时ꎬＮＯｘ排放与 ＣＯ

浓度成反比ꎬ而在 ＮＨ３ / Ｈ２ 混燃中ꎬ当量比约为 ０. ９５
时ꎬ可同时实现低 ＮＯｘ排放与低氨逃逸ꎮ

基于温和燃烧还发展出富氧温和燃烧等衍生技

术ꎬ旨在结合富氧燃烧提高燃烧系统效率并便于碳

捕集[８８]ꎮ 另一重要方向是与旋流燃烧结合ꎬ Ｓｏｒ￣
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ｒｅｎｔｉｎｏ 等人[８９]发现ꎬ当反应器温度高于 １ ３００ Ｋ 时ꎬ

高预热可保证稳定ꎬ低氧则抑制 ＮＯｘ生成ꎮ 该组合

有望在化学计量比附近稳定燃烧ꎬ从而解决传统旋

流燃烧中贫燃高 ＮＯｘ与富燃高 ＮＨ３ 逃逸的矛盾ꎮ

综上ꎬ温和燃烧通过其高温、低氧的分布式反应

区ꎬ根本性地改变了氨的燃烧模式ꎬ为解决其稳定性

和 ＮＯｘ控制难题提供了有效方案ꎮ 无论是纯氨、掺

混燃料ꎬ还是与旋流、富氧技术结合ꎬ温和燃烧都在

工业锅炉、燃气轮机等领域展现出巨大潜力ꎬ为低碳

能源转型提供了重要技术支撑ꎮ

４. ３　 液氨燃烧技术

直接喷射液氨燃烧因能简化系统、缩短启动时

间而具备显著工程优势ꎬ但这也将燃烧问题从纯

化学动力学扩展至复杂的液相雾化与蒸发物理过

程ꎮ 氨的低沸点特性使其喷雾易于发生闪沸(Ｆｌａｓｈ
Ｂｏｉｌｉｎｇ)ꎬ这一现象对燃烧过程具有双重影响ꎮ

闪沸的积极效应在于能促进液滴二次破碎ꎬ显

著减小雾化粒径并加速蒸发[９０]ꎮ 然而ꎬ其负面效应

源于氨极高的汽化潜热ꎬ蒸发过程强烈的吸热会导

致局部温度骤降ꎬ在氨火焰速度本就较低的情况下

极易引发淬熄ꎬ这是早期研究中难以稳定液氨火焰

的根本原因ꎮ 为克服此挑战ꎬ现代研究聚焦于气动

稳定与化学改性两种工程对策ꎮ 气动稳定方面ꎬ
Ｏｋａｆｏｒ 等人[９１]的研究证实ꎬ强旋流形成的中心回流

区(ＣＲＺ)至关重要[９２]ꎬＣＲＺ 能将高温产物和活性自

由基输运至火焰根部ꎬ为液氨汽化提供能量ꎮ 化学

改性方面ꎬ与 Ｈ２ 或 ＣＨ４ 等高活性燃料掺混是关键

手段ꎬＳｏｍａｒａｔｈｎｅ 等人[９３] 的研究表明ꎬ掺混燃料能

有效缩短火焰长度、提升整体稳定性ꎮ 液氨燃烧器

结构及燃烧特性如图 １８ 所示ꎮ

图 １８　 液氨燃烧器结构及燃烧特性

Ｆｉｇ. １８ Ｓｔｒｕｃｔｕｒｅ ａｎｄ ｃｏｍｂｕｓｔｉｏｎ ｃｈａｒａｃｔｅｒｉｓｔｉｃｓ

ｏｆ ｌｉｑｕｉｄ ａｍｍｏｎｉａ ｂｕｒｎｅｒｓ

由图 １８ 可知ꎬ直接燃烧液氨在紧凑、快速响应

的动力系统中展现出巨大潜力ꎬ通过结合强旋流与

燃料掺混可实现稳定燃烧ꎮ 然而ꎬ该领域的基础研

究仍不充分ꎬ尤其在高温高压下ꎬ液氨的蒸发、分解

与燃烧耦合的复杂机理尚不明确ꎮ 为此ꎬ仍需深入

的实验与数值模拟研究ꎬ以揭示其内在规律ꎬ为工程

应用的优化设计提供理论指导ꎮ

５　 氨燃料动力装置技术应用

在“双碳”目标推动下ꎬ氨作为燃料的最终目标

在于实现在不同的燃烧装备中的应用ꎬ涵盖内燃机、
燃气轮机等动力装置ꎬ以及工业加热炉ꎬ工业锅炉等

工业热能装备ꎮ
５. １　 氨燃料内燃机

氨燃料内燃机的应用探索可追溯至 １９ 世纪 ２０
年代戈尔兹沃西􀅰格尼爵士的开创性尝试[９４]ꎬ并在

二战及 ２０ 世纪 ６０ 年代的能源危机期间ꎬ作为化石

燃料的替代品而备受关注[９５ － ９７]ꎮ 进入 ２１ 世纪ꎬ全
球航运业的脱碳法规成为核心驱动力ꎬ极大加速了

主流发动机制造商的商业化进程ꎮ
大型二冲程发动机制造商 ＭＡＮ Ｅｎｅｒｇｙ Ｓｏｌｕｔｉｏｎｓ

已成功验证其 ４Ｔ５０ＭＥ￣Ｘ 型发动机的纯氨稳定燃

烧ꎬ其技术路径主要采用成熟的选择性催化还原

(ＳＣＲ) 系统对废气进行后处理以满足排放标

准[９８ － ９９]ꎮ 相关的船上整体布局方案也已提出ꎬ如图

１９ 和图 ２０ 所示ꎬ显示出该技术路径已具备较高的

技术成熟度ꎮ
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图 １９　 哥本哈根研发中心测试氨燃料发动机

Ｆｉｇ. １９ Ａｍｍｏｎｉａ￣ｆｕｅｌｅｄ ｅｎｇｉｎｅ ｔｅｓｔｅｄ ｉｎ ＭＡＮ

Ｅｎｅｒｇｙ Ｓｏｌｕｔｉｏｎｓ′ Ｒｅｓｅａｒｃｈ Ｃｅｎｔｒｅ

Ｃｏｐｅｎｈａｇｅｎ (ＲＣＣ)

图 ２０　 氨燃料船舶加注系统总体布置方案

Ｆｉｇ. ２０ Ｏｖｅｒａｌｌ ｌａｙｏｕｔ ｓｃｈｅｍｅ ｏｆ ａｍｍｏｎｉａ￣ｆｕｅｌｅｄ

ｓｈｉｐ ｂｕｎｋｅｒｉｎｇ ｓｙｓｔｅｍ

　 　 相比之下ꎬ另一主流制造商 ＷｉｎＧＤ 则在其新型

Ｘ￣ＤＦ￣Ａ 氨燃料发动机上实现了燃烧本体的重大突

破ꎮ Ｘ￣ＤＦ￣Ａ 氨燃料发动机 ５２ 缸径单缸 ２０２５ 年 １
月的测试结果显示[１００]ꎬ发动机实现了与柴油相当

的功率、转速和热效率(引燃油能耗占比约 ５％ )ꎬ且
机内 ＮＯｘ排放较低ꎬＮＨ３ 逃逸小于 １０ × １０ － ６ꎬＮ２Ｏ

排放小于 ３ × １０ － ６ꎬ表明该发动机仅需利用自身极

低的氨逃逸作为还原剂ꎬ即可实现较低的 ＮＯｘ 排

放ꎬ展现了优异的机内净化性能ꎮ
这些技术突破正迅速转化为商业订单ꎬ标志着

氨燃料发动机已进入市场导入阶段ꎮ ＷｉｎＧＤ 已于

２０２５ 年 ６ 月开始交付首批多缸发动机ꎬ将安装在包

括 Ｅｘｍａｒ ＬＰＧ、ＣＭＢ. ＴＥＣＨ 和天津西南海运在内的

多家船东订购的液化石油气(ＬＰＧ) /氨运输船和散

货船上[１０１]ꎮ 主流制造商的成功研发与批量订单的

落地ꎬ清晰地表明氨燃料内燃机作为航运业脱碳的

关键技术之一ꎬ正从理论验证阶段走向规模化应用ꎮ
５. ２　 氨燃料燃气轮机

除内燃机外ꎬ氨燃料在燃气轮机发电领域同样

展现出巨大潜力ꎮ 日本产业技术综合研究所

(ＡＩＳＴ)率先开展了小规模验证工作ꎬ将一台 ５０ ｋＷ
级燃气轮机成功改造为可燃用纯氨的双燃料机

组[１０２]ꎮ 其核心技术在于设计了一款采用扩散燃烧

的新型燃烧室[１０３]ꎬＡＩＳＴ 的实验成功验证了该机组

不仅能在 ＮＨ３ / ＣＨ４ 掺混模式下稳定运行ꎬ更重要的

是最终实现 １００％纯氨的稳定燃烧ꎮ 在排放控制方

面ꎬ虽然机内 ＮＯｘ原始排放较高大于 ６００ × １０ － ６ꎬ但

通过集成的 ＳＣＲ 系统可将其浓度降至 １０ × １０ － ６

以下ꎮ
在 ＮＨ３ / ＣＨ４双燃料燃烧试验中ꎬ通过向液体燃

料喷射阀通入煤油的方式启动燃气轮机ꎮ 在转速快

速提升后ꎬ在维持发电机 ７５ ０００ ｒ / ｍｉｎ 转速的同时

开始发电ꎮ 稳定转速发电 ２６ ｋＷ 后ꎬ将甲烷送入气

体燃料喷射阀进行甲烷燃烧ꎬ并停止煤油供给ꎮ 即

使在体积流量比为 １∶ ２. ５ 的甲烷与氨(热值 １∶ １)的
氨水混合后ꎬ也可以实现稳定的发电ꎮ 之后ꎬ在控制

供油量和转速的同时ꎬ逐步提高发电输出ꎬ在额定转

速 ８０ ０００ ｒ / ｍｉｎ 时输出功率达到 ４１. ８ ｋＷꎬ燃料进

料量和发电输出功率的变化如图 ２１ 所示ꎮ

图 ２１　 甲烷 －氨双燃料燃烧试验中燃料进料量和

发电输出功率的变化

Ｆｉｇ. ２１ Ｃｈａｎｇｅ ｉｎ ｆｕｅｌ ｆｅｅｄ ａｎｄ ｐｏｗｅｒ ｇｅｎｅｒａｔｉｏｎ ｏｕｔｐｕｔ

ｉｎ ｍｅｔｈａｎｅ￣ａｍｍｏｎｉａ ｂｉｆｕｅｌ ｃｏｍｂｕｓｔｉｏｎ ｔｅｓｔ

在氨气单燃料燃烧试验中ꎬ通过给煤油补燃

的方式启动燃气轮机ꎮ 然后通过增加氨气量ꎬ将燃
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料过渡到氨气单燃料燃烧ꎮ 同时对输出进行检查ꎬ
并在额定转速为 ８０ ０００ ｒ / ｍｉｎ 时记录 ４１. ８ ｋＷ 的发

电输出ꎬ燃料进料量和发电输出功率的变化如图 ２２
所示ꎮ

图 ２２　 氨单燃料燃烧试验中燃料进料量和发电

输出功率的变化

Ｆｉｇ. ２２ Ｃｈａｎｇｅ ｉｎ ｆｕｅｌ ｆｅｅｄ ａｎｄ ｐｏｗｅｒ ｇｅｎｅｒａｔｉｏｎ

ｏｕｔｐｕｔ ｉｎ ａｍｍｏｎｉａ ｍｏｎｏ￣ｆｕｅｌ ｃｏｍｂｕｓｔｉｏｎ ｔｅｓｔ

在 ＡＩＳＴ 等机构完成基础验证之后ꎬ以石川岛

播磨重工业株式会社(ＩＨＩ)为代表的工业界则致力

于将该技术向大型商用燃气轮机推广ꎮ 继 ２０１８ 年

实现 ２０％氨 /天然气混燃后ꎬＩＨＩ 开发了一种可直接

喷射液氨的新型空气分级燃烧室[１０４]ꎬ 如图 ２３
所示ꎮ

图 ２３　 液氨新型燃烧室示意图

Ｆｉｇ. ２３ Ｓｃｈｅｍａｔｉｃ ｄｉａｇｒａｍ ｏｆ ａ ｎｏｖｅｌ ｌｉｑｕｉｄ￣

ａｍｍｏｎｉａ ｃｏｍｂｕｓｔｏｒ

２０２２ 年ꎬ该燃烧室在 ＩＨＩ ２ ０００ ｋＷ 级的 ＩＭ２７０

燃气轮机上测试成功ꎬ取得了重大突破[１０５]ꎬ如图 ２４

所示ꎮ 在氨燃料热值占比高达 ７０％ ~ １００％ 的工

况下ꎬ温室气体减排超 ７０％ ꎬ且 Ｎ２Ｏ 生成量也得到

显著抑制ꎮ 这一系列成功的工程验证ꎬ为 ＩＨＩ 在

２０２５ 年实现氨燃气轮机的商业化应用奠定了坚实

基础ꎮ

图 ２４　 ＩＨＩ ２ ０００ ｋＷ 级燃气轮机 ＩＭ２７０

Ｆｉｇ. ２４ ＩＨＩ ２ ０００ ｋＷ ｇａｓ ｔｕｒｂｉｎｅ ＩＭ２７０

５. ３　 工业燃烧炉

氨燃料在工业热利用和大规模发电领域也取得

了关键进展ꎬ特别是在中国和日本已开展了多个示

范项目ꎮ 中国仙湖实验室针对纯氨在工业高温窑

炉中的应用进行了研究ꎬ成功研发出一款可在 ３ ~
４５ ｋＷ功率范围内稳定燃烧纯氨的新型燃烧器ꎬ其
燃烧效率高达 ９９. ９％ ꎮ 为实现超低 ＮＯｘ排放ꎬ该技

术采用了燃烧器内的分级燃烧与燃烧后的 ＳＣＲ 脱

硝相结合的双重控制策略ꎬ最终可将 ＮＯｘ排放浓度

稳定在 ４９ × １０ － ６以下[１０６]ꎮ 基于该技术成功烧制的

“零碳绿色瓷砖”ꎬ标志着纯氨在工业高温热源领域

的应用潜力已得到初步验证ꎮ
在更为关键的电力行业ꎬ氨煤混燃被视为燃

煤电厂低碳转型的重要过渡方案ꎮ 中国在此领域

已取得显著成果ꎬ国家能源集团在 ４０ ＭＷ 燃煤锅炉

上成功实现了高达 ３５％氨热值占比的混烧[１０７]ꎮ 氨

煤混烧试验台如图 ２５ 所示ꎬ氨煤混燃 ＮＯｘ生成控

制机理可通过 １０ ＭＷ 级燃烧测试台的数据结果得

到进一步阐释[１０８]ꎮ
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图 ２５　 氨 －煤混烧试验台

Ｆｉｇ. ２５ Ａｍｍｏｎｉａ￣ｃｏａｌ ｃｏ￣ｆｉｒｉｎｇ ｔｅｓｔ ｒｉｇ

　 　 １０ ｋＷ 级燃烧测试炉试验系统如图 ２６ 所示ꎮ
该系统将氨喷入主燃区煤粉火焰的内部回流区ꎬ利
用该区域高温还原性气氛抑制氨的氧化ꎬ从而降低

ＮＯｘ 生成ꎮ 日本在氨煤混燃技术规模化商业示范

方面走在前列ꎬＪＥＲＡ 与 ＩＨＩ 公司在 １ ＧＷ 级碧南火

力发电厂 ４ 号机组上ꎬ示范了 ２０％的氨混烧[１０６]ꎬ其
专用的低 ＮＯｘ燃烧器(如图 ２７ 所示)同样利用了分

级燃烧与将氨注入还原区的核心技术原理ꎬ达到降

低 ＮＯｘ 排放、提高燃烧效率的效果ꎮ

图 ２６　 １０ ＭＷ 级燃烧测试炉试验系统流程图

Ｆｉｇ. ２６ Ｆｌｏｗｃｈａｒｔ ｏｆ ｔｅｓｔ ｓｙｓｔｅｍ ｏｆ １０ ＭＷ ｃｏｍｂｕｓｔｉｏｎ

ｔｅｓｔ ｆｕｒｎａｃｅ

图 ２７　 锅炉燃烧器结构示意图

Ｆｉｇ. ２７ Ｓｃｈｅｍａｔｉｃ ｄｉａｇｒａｍ ｏｆ ｂｏｉｌｅｒ ｂｕｒｎｅｒ ｓｔｒｕｃｔｕｒｅ

５. ４　 氨燃料电池

氨燃料电池可将氨的化学能直接转化为电能ꎬ
因其燃料具备高氢密度、储运便利等优势而备受关

注ꎮ 然而ꎬ不同燃料电池对氨的化学兼容性存在显

著差异ꎬ这直接决定了其技术路线与应用前景ꎮ
质子交换膜燃料电池(ＰＥＭＦＣ)技术成熟、响应

迅速ꎬ但其铂基催化剂对氨极为敏感ꎮ Ｆａｎ 等人[１０９]

的研究证实ꎬ即使浓度 １０ － ６级的微量氨也会造成迅

速且不可逆的催化剂中毒ꎬ导致性能严重衰退ꎮ 因

此ꎬＰＥＭＦＣ 无法直接利用氨ꎬ必须采用“氨裂解 － 氢

气提纯”的间接技术路径ꎬ从而增加了系统的复杂

性与成本[１１０]ꎮ
高温固体氧化物燃料电池(ＳＯＦＣ)则与氨直接兼

容[１１１]ꎮ 在高于 ６００ ℃ 的工作温度下ꎬ氨可直接在

ＳＯＦＣ 的非贵金属阳极上原位裂解并参与反应[１１２]ꎮ

Ｓｈｙ 等人[１１３]研究表明ꎬ提升温度( > ７５０ ℃)与压力

可有效提高氨转化率和功率密度ꎮ ＳＯＦＣ 无需纯氢

的优势使其备受关注ꎬ但其高温运行带来的启停慢、
材料耐久性等问题仍是商业化推广的主要挑战ꎮ

碱性燃料电池(ＡＦＣ)是另一条可行的直接氨燃

料技术路线ꎬ且商业化程度较高ꎮ ＡＦＣ 的碱性环境

对氨不敏感ꎬ避免了催化剂中毒ꎬ显著降低了对燃料

纯度的要求ꎮ 以色列 ＧｅｎＣｅｌｌ 公司的 ＧｅｎＣｅｌｌ ＦＯＸ
即是成功范例ꎬ该 ４ ｋＷ 系统集成了小于 ７００ ℃的

低温氨裂解单元ꎬ可直接使用氨燃料[１１４]ꎮ 其技术

可靠性已在冰岛等地的长期( > １ ５００ ｈ)恶劣环境

现场测试中得到验证ꎬ展现出在离网供电领域的巨

大潜力[１１５ － １１７]ꎮ

６　 结　 论

在全球能源低碳转型的背景下ꎬ氨能源凭借其

零碳排放、高储氢密度和良好的基础设施兼容性ꎬ已
成为实现“双碳”目标的关键技术路径ꎮ 本文综述

了氨能源从合成、储运到燃烧应用的全价值链ꎬ系统

分析其技术进展、核心挑战与未来发展方向ꎮ 主要

结论如下:
(１) 绿氨合成是氨能源脱碳的核心路径ꎮ 该路

径以可再生电力电解水制氢替代传统化石原料ꎬ从
根本上解决了哈伯 － 博世工艺的高碳排放问题(当
前中国化石能源占比 ９８％ )ꎬ是实现该行业与国家
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“双碳”战略深度融合的根本途径ꎻ
(２) 氨作为能源载体具有储运优势与燃烧挑战

的双重性ꎮ 其高能量密度与低储运成本构成显著优

势ꎬ而低火焰速度、窄可燃极限等燃烧特性则带来挑

战ꎮ 随着绿氨生产成本的持续下降ꎬ其作为高效氢

载体的经济性日益凸显ꎬ正逐步克服其燃烧应用的

技术障碍ꎻ
(３) 针对氨燃烧挑战ꎬ已形成以燃烧组织、燃烧

模式创新和燃料改性为核心的技术体系ꎮ 通过旋

流燃烧实现气动稳定、ＭＩＬＤ 燃烧实现低 ＮＯｘ抑制

( < １０ × １０ － ６)ꎬ以及掺混 Ｈ２ / ＣＨ４ 实现化学强化ꎬ可
有效提升氨燃烧性能ꎮ 这些技术策略的理论基础均

源于对 ＨＮＯ 作为 ＮＯｘ关键前驱体的机理认知ꎬ并

通过应用分级燃烧、富燃等手段进行调控ꎻ
(４) 氨能源的技术可行性已在不同工程领域应

用中得到验证ꎬ商业化进程逐步加速ꎮ 在船舶动力

(ＷｉｎＧＤ)、燃气轮机(ＩＨＩ)、工业燃烧(仙湖实验室)
及燃料电池(ＧｅｎＣｅｌｌ)等领域的成功示范ꎬ标志其技

术已日趋成熟ꎮ 在国际碳中和与国家政策的双重驱

动下ꎬ未来的发展需聚焦于构建“电 － 氢 － 氨”一体

化的产业链、完善技术标准与安全体系ꎬ并向航空、长
周期储能等新场景拓展ꎮ 通过深化国际合作ꎬ有望加

速氨能源从工程验证到全球商业化应用的全面过渡ꎮ
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[９２] 　 ＯＫＡＦＯＲ Ｅ ＣꎬＫＵＲＡＴＡ ＯꎬＹＡＭＡＳＨＩＴＡ Ｈꎬｅｔ ａｌ. Ｌｉｑｕｉｄ ａｍ￣
ｍｏｎｉａ ｓｐｒａｙ ｃｏｍｂｕｓｔｉｏｎ ｉｎ ｔｗｏ￣ｓｔａｇｅ ｍｉｃｒｏ ｇａｓ ｔｕｒｂｉｎｅ ｃｏｍｂｕｓｔｏｒｓ
ａｔ ０. ２５ ＭＰａꎻ Ｒｅｌｅｖａｎｃｅ ｏｆ ｃｏｍｂｕｓｔｉｏｎ ｅｎｈａｎｃｅｍｅｎｔ ｔｏ ｆｌａｍｅ
ｓｔａｂｉｌｉｔｙ ａｎｄ ＮＯｘ ｃｏｎｔｒｏｌ[ Ｊ] . Ａｐｐｌｉｃａｔｉｏｎｓ ｉｎ Ｅｎｅｒｇｙ ａｎｄ Ｃｏｍ￣
ｂｕｓｔｉｏｎ Ｓｃｉｅｎｃｅꎬ２０２１ꎬ７:１０００３８.

[９３] 　 ＳＯＭＡＲＡＴＨＮＥ ＫꎬＹＡＭＡＳＨＩＴＡ ＨꎬＣＯＬＳＯＮ Ｓꎬ ｅｔ ａｌ. Ｌｉｑｕｉｄ
ａｍｍｏｎｉａ ｓｐｒａｙ ｃｏｍｂｕｓｔｉｏｎ ａｎｄ ｅｍｉｓｓｉｏｎ ｃｈａｒａｃｔｅｒｉｓｔｉｃｓ ｗｉｔｈ ｇａｓ￣
ｅｏｕｓ ｈｙｄｒｏｇｅｎ / ａｉｒ ｃｏ￣ｆｉｒｉｎｇ[ Ｃ]∥１３ｔｈ Ａｓｉａ￣Ｐａｃｉｆｉｃ Ｃｏｎｆｅｒｅｎｃｅ
ｏｎ ＣｏｍｂｕｓｔｉｏｎꎬＡＤＮＥＣꎬＡｂｕ Ｄｈａｂｉ￣ＵＡＥꎬ２０２１.

[９４] 　 Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｅｎｅｒｇｙ Ａｇｅｎｃｙ (ＩＥＡ). Ｔｈｅ ｆｕｔｕｒｅ ｏｆ ｈｙｄｒｏｇｅｎ[Ｒ /
ＯＬ]. Ｐａｒｉｓ:ＩＥＡꎬ２０１９[２０１９ － ０６ － １３]. ｈｔｔｐｓ:∥ｗｗｗ. ｉｅａ. ｏｒｇ /
ｒｅｐｏｒｔｓ / ｔｈｅ － ｆｕｔｕｒｅ － ｏｆ － ｈｙｄｒｏｇｅｎ.

[９５] 　 ＫＲＯＣＨ Ｅ. Ａｍｍｏｎｉａ￣ａ ｆｕｅｌ ｆｏｒ ｍｏｔｏｒ ｂｕｓｅｓ[Ｊ] . Ｊｏｕｒｎａｌ ｏｆ ｔｈｅ Ｉｎ￣
ｓｔｉｔｕｔｅ ｏｆ Ｐｅｔｒｏｌｅｕｍꎬ１９４５ꎬ３１:２１４ － ２２３.

[９６] 　 ＧＲＡＹ ＪꎬＤＩＭＩＴＲＯＦＦ ＥꎬＭＥＣＫＥＬ Ｎꎬｅｔ ａｌ. Ａｍｍｏｎｉａ ｆｕｅｌ￣ｅｎ￣
ｇｉｎｅ ｃｏｍｐａｔｉｂｉｌｉｔｙ ａｎｄ ｃｏｍｂｕｓｔｉｏｎ [ Ｊ] . ＳＡＥ Ｔｅｃｈｎｉｃａｌ Ｐａｐｅｒꎬ
１９６６:６６０１５６.

[９７] 　 ＳＴＡＲＫＭＡＮ Ｅ ＳꎬＮＥＷＨＡＬｌ Ｈ ＫꎬＳＵＴＴＯＮ Ｒꎬｅｔ ａｌ. Ａｍｍｏｎｉａ
ａｓ ａ ｓｐａｒｋ ｉｇｎｉｔｉｏｎ ｅｎｇｉｎｅ ｆｕｅｌ:Ｔｈｅｏｒｙ ａｎｄ ａｐｐｌｉｃａｔｉｏｎ[Ｒ]. ＳＡＥ
Ｉｎｔｅｒｎａｔｉｏｎａｌꎬ１９６６.

[９８] 　 Ｓｅａｔｒａｄｅ Ｍａｒｉｔｉｍｅ. Ｇｒｏｕｎｄｂｒｅａｋｉｎｇ ｆｉｒｓｔ ａｍｍｏｎｉａ ｅｎｇｉｎｅ ｔｅｓｔ ｃｏ￣
ｍｐｌｅｔｅｄ[ＥＢ / ＯＬ]. [２０２３ － ０７ － １３]. ｈｔｔｐｓ:∥ｗｗｗ. ｓｅａｔｒａｄｅ￣
ｍａｒｉｔｉｍｅ. ｃｏｍ / ｐｒｏｄｕｃｔ￣ｓｅｒｖｉｃｅ￣ｎｅｗｓ / ｇｒｏｕｎｄｂｒｅａｋｉｎｇ￣ｆｉｒｓｔ￣ａｍｍｏ￣
ｎｉａ￣ｅｎｇｉｎｅ￣ｔｅｓｔ￣ｃｏｍｐｌｅｔｅｄ.

[９９] 　 ＭＡＮ Ｅｎｅｒｇｙ Ｓｏｌｕｔｉｏｎｓ. ＭＡＮ Ｂ＆Ｗ ｔｗｏ￣ｓｔｒｏｋｅ ｅｎｇｉｎｅ ｏｐｅｒａｔｉｎｇ
ｏｎ ａｍｍｏｎｉａ[ＥＢ / ＯＬ]. [２０２３ － １０ － ０１]. ｈｔｔｐｓ:∥ｗｗｗ. ｍａｎ￣
ｅｓ. ｃｏｍ / ｄｏｃｓ / ｄｅｆａｕｌｔ￣ｓｏｕｒｃｅ / ｍａｒｉｎｅ / ｔｏｏｌｓ / ｍａｎ￣ｂ￣ｗ￣ｔｗｏ￣ｓｔｒｏｋｅ￣
ｅｎｇｉｎｅ￣ｏｐｅｒａｔｉｎｇ￣ｏｎ￣ａｍｍｏｎｉａ. ｐｄｆ? ｓｆｖｒｓｎ ＝ ５４４ｄｃ８１１＿１０.

[１００] 　 ＷｉｎＧＤ. ＷｉｎＧＤ ｒｅｃｏｒｄｓ ｓｕｃｃｅｓｓｆｕｌ ｅａｒｌｙ ｒｕｎｎｉｎｇ ｏｎ Ｘ￣ＤＦ￣Ａ
ａｍｍｏｎｉａ￣ｆｕｅｌｌｅｄ ｅｎｇｉｎｅ[ＥＢ / ＯＬ]. [２０２５ － ０１ － ２４]. ｈｔｔｐｓ:∥
ｗｉｎｇｄ. ｃｏｍ / ｎｅｗｓ￣ｍｅｄｉａ / ｎｅｗｓ / ｗｉｎｇｄ￣ｒｅｃｏｒｄｓ￣ｓｕｃｃｅｓｓｆｕｌ￣ｅａｒｌｙ￣
ｒｕｎｎｉｎｇ￣ｏｎ￣ｘ￣ｄｆ￣ａ￣ａｍｍｏｎｉａ￣ｆｕｅｌｌｅｄ￣ｅｎｇｉｎｅ.

[１０１] 　 信德海事网. ＷｉｎＧＤ 分享了氨燃料船舶主机的测试数据

[ＥＢ / ＯＬ]. [２０２５ － ０３ － １４]. ｈｔｔｐｓ:∥ｗｗｗ. ｘｉｎｄｅｍａｒｉｎｅｎｅｗｓ.
ｃｏｍ / ｔｏｐｉｃ / ｙａｚａｉｓｈｕｉｇｕａｎｌｉ / ５８８０９. ｈｔｍｌ.
Ｘｉｎｄｅ ｍａｒｉｎｅ ｎｅｗｓ. ＷｉｎＧＤ ｓｈａｒｅｄ ｔｅｓｔ ｄａｔａ ｏｎ ａｍｍｏｎｉａ￣ｆｕｅｌｅｄ
ｍａｒｉｎｅ ｍａｉｎ ｅｎｇｉｎｅｓ [ ＥＢ / ＯＬ]. [２０２５ － ０３ － １４]. ｈｔｔｐｓ:∥
ｗｗｗ. ｘｉｎｄｅｍａｒｉｎｅｎｅｗｓ. ｃｏｍ / ｔｏｐｉｃ / ｙａｚａｉｓｈｕｉｇｕａｎｌｉ / ５８８０９. ｈｔｍｌ.

[１０２] 　 ＩＫＩ ＮꎬＫＵＲＡＴＡ ＯꎬＭＡＴＳＵＮＵＭＡ Ｔꎬｅｔ ａｌ. Ｍｉｃｒｏ ｇａｓ ｔｕｒｂｉｎｅ
ｆｉｒｉｎｇ ａｍｍｏｎｉａ [ Ｃ] ∥Ｖｏｌｕｍｅ ８:ＭｉｃｒｏｔｕｒｂｉｎｅｓꎬＴｕｒｂｏｃｈａｒｇｅｒｓ
ａｎｄ Ｓｍａｌｌ ＴｕｒｂｏｍａｃｈｉｎｅｓꎻＳｔｅａｍ Ｔｕｒｂｉｎｅｓ. ＳｅｏｕｌꎬＳｏｕｔｈ Ｋｏｒｅａ:
Ａｍｅｒｉｃａｎ Ｓｏｃｉｅｔｙ ｏｆ Ｍｅｃｈａｎｉｃａｌ Ｅｎｇｉｎｅｅｒｓꎬ２０１６:Ｖ００８Ｔ２３Ａ０１８.

[１０３] 　 ＫＵＲＡＴＡ ＯꎬＩＫＩ ＮꎬＭＡＴＳＵＮＵＭＡ Ｔꎬｅｔ ａｌ. Ｐｅｒｆｏｒｍａｎｃｅｓ ａｎｄ ｅ￣
ｍｉｓｓｉｏｎ ｃｈａｒａｃｔｅｒｉｓｔｉｃｓ ｏｆ ＮＨ３ ￣ａｉｒ ａｎｄ ＮＨ３ ￣ＣＨ４ ￣ａｉｒ ｃｏｍｂｕｓｔｉｏｎ
ｇａｓ￣ｔｕｒｂｉｎｅ ｐｏｗｅｒ ｇｅｎｅｒａｔｉｏｎｓ[ Ｊ] . Ｐｒｏｃｅｅｄｉｎｇｓ ｏｆ ｔｈｅ Ｃｏｍｂｕｓ￣
ｔｉｏｎ Ｉｎｓｔｉｔｕｔｅꎬ２０１７ꎬ３６(３):３３５１ － ３３５９.

[１０４] 　 ＭＡＳＡＨＩＲＯ ＵꎬＳＨＩＮＴＡＲＯ ＩꎬＴＯＳＨＩＹＵＫＩ Ｓ. Ｄｅｖｅｌｏｐｍｅｎｔ ｏｆ
ｌｉｑｕｉｄ ａｍｍｏｎｉａ ｄｉｒｅｃｔ ｓｐｒａｙ ｃｏｍｂｕｓｔｉｏｎ ｇａｓ ｔｕｒｂｉｎｅ[Ｊ] . ＩＨＩ Ｅｎ￣
ｇｉｎｅｅｒｉｎｇ Ｒｅｖｉｅｗꎬ２０２２ꎬ５５(１):１５３９５６.

[１０５] 　 ＩＨＩ. ＣＯ２ ￣ｆｒｅｅ ｐｏｗｅｒ ｇｅｎｅｒａｔｉｏｎ ａｃｈｉｅｖｅｄ ｗｉｔｈ ｔｈｅ ｗｏｒｌｄ′ｓ ｆｉｒｓｔ
ｇａｓ ｔｕｒｂｉｎｅ ｕｓｉｎｇ １００％ ｌｉｑｕｉｄ ａｍｍｏｎｉａ[ＥＢ / ＯＬ]. [２０２３ － ０９
－ ０４]. ｈｔｔｐｓ:∥ｗｗｗ. ｉｈｉ. ｃｏ. ｊｐ / ｅｎ / ａｌｌ＿ｎｅｗｓ / ２０２２ / ｒｅｓｏｕｒｃｅｓ＿

ｅｎｅｒｇｙ＿ｅｎｖｉｒｏｎｍｅｎｔ / １１９７９３８＿３４８８. ｈｔｍｌ.
[１０６] 　 ＩＨＩ. ＪＥＲＡ ａｎｄ ＩＨＩ ｔｏ ｓｔａｒｔ ａ ｄｅｍｏｎｓｔｒａｔｉｏｎ ｐｒｏｊｅｃｔ ｒｅｌａｔｅｄ ｔｏ

ａｍｍｏｎｉａ ｃｏ￣ｆｉｒｉｎｇ ａｔ ａ ｌａｒｇｅ￣ｓｃａｌｅ ｃｏｍｍｅｒｃｉａｌ ｃｏａｌ￣ｆｉｒｅｄ ｐｏｗｅｒ
ｐｌａｎｔ[ＥＢ / ＯＬ]. (２０２１ － ０５ － ２４) [２０２３ － ０９ － ０４]. ｈｔｔｐｓ:∥
ｗｗｗ. ｉｈｉ. ｃｏ. ｊｐ / ｅｎ / ａｌｌ＿ｎｅｗｓ / ２０２４ / ｒｅｓｏｕｒｃｅｓ＿ｅｎｅｒｇｙ＿ｅｎｖｉｒｏｎ￣
ｍｅｎｔ / １２００７３７＿１３６９１. ｈｔｍｌ.

[１０７] 　 ＶＡＬＥＲＡ Ｍ ＡꎬＶＩＧＵＥＲＡＳ Ｚ ＭꎬＳＨＩ Ｈꎬｅｔ ａｌ. Ａｍｍｏｎｉａ ｃｏｍ￣
ｂｕｓｔｉｏｎ ｉｎ ｆｕｒｎａｃｅｓ:Ａ ｒｅｖｉｅｗ[ Ｊ] . Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ Ｈｙ￣
ｄｒｏｇｅｎ Ｅｎｅｒｇｙꎬ２０２４ꎬ４９:１５９７ － １６１８.

[１０８] 　 ＨＩＲＯＫＩ ＬꎬＥＭＩ ＯꎬＴＡＫＡＨＩＲＯ Ｋꎬｅｔ ａｌ. Ｄｅｖｅｌｏｐｍｅｎｔ ｏｆ ｃｏ￣ｆｉｒ￣
ｉｎｇ ｔｅｃｈｎｏｌｏｇｙ ｏｆ ｐｕｌｖｅｒｉｚｅｄ ｃｏａｌ ａｎｄ ａｍｍｏｎｉａ ｆｏｒ ｓｕｐｐｒｅｓｓｉｎｇ
ＮＯｘ ｇｅｎｅｒａｔｉｏｎ[Ｊ] . Ｔｒａｎｓａｃｔｉｏｎｓ ｏｆ ｔｈｅ ＪＳＭＥ ( ｉｎ Ｊａｐａｎｅｓｅ)ꎬ
２０２０ꎬ８６(８８３):１９００３６３.

[１０９] 　 ＦＡＮ ＱꎬＬＩＵ ＸꎬＸＵ Ｌꎬｅｔ ａｌ. Ｆｌａｍｅ ｓｔｒｕｃｔｕｒｅ ａｎｄ ｂｕｒｎｉｎｇ ｖｅｌｏｃｉ￣
ｔｙ ｏｆ ａｍｍｏｎｉａ / ａｉｒ ｔｕｒｂｕｌｅｎｔ ｐｒｅｍｉｘｅｄ ｆｌａｍｅｓ ａｔ ｈｉｇｈ Ｋａｒｌｏｖｉｔｚ
ｎｕｍｂｅｒ ｃｏｎｄｉｔｉｏｎｓ [ Ｊ ] . Ｃｏｍｂｕｓｔｉｏｎ ａｎｄ Ｆｌａｍｅꎬ ２０２２ꎬ
２３８:１１１９４３.

[１１０] 　 陈永珍ꎬ韩　 颖ꎬ宋文吉ꎬ等. 绿氨能源化及氨燃料电池研究

进展[Ｊ] . 储能科学与技术ꎬ２０２３ꎬ１２(１):１１１ － １１９.
ＣＨＥＮ ＹｏｎｇｚｈｅｎꎬＨＡＮ ＹｉｎｇꎬＳＯＮＧ Ｗｅｎｊｉꎬｅｔ ａｌ. Ｒｅｓｅａｒｃｈ ｐｒｏ￣
ｇｒｅｓｓ ｏｆ ｇｒｅｅｎ ａｍｍｏｎｉａ ｅｎｅｒｇｙ ａｎｄ ａｍｍｏｎｉａ ｆｕｅｌ ｃｅｌｌ[Ｊ] . Ｅｎｅｒ￣
ｇｙ Ｓｔｏｒａｇｅ Ｓｃｉｅｎｃｅ ａｎｄ Ｔｅｃｈｎｏｌｏｇｙꎬ２０２３ꎬ１２(１):１１１ － １１９.

[１１１] 　 ＶＡＹＥＮＡＳ Ｃ ＧꎬＦＡＲＲ Ｒ Ｄ. Ｃｏｇｅｎｅｒａｔｉｏｎ ｏｆ ｅｌｅｃｔｒｉｃ ｅｎｅｒｇｙ ａｎｄ
ｎｉｔｒｉｃ ｏｘｉｄｅ[Ｊ] . Ｓｃｉｅｎｃｅꎬ１９８０ꎬ２０８(４４４４):５９３ － ５９４.

[１１２] 　 ＷＯＪＣＩＫ ＡꎬＭＩＤＤＬＥＴＯＮ ＨꎬＤＡＭＯＰＯＵＬＯＳ Ｉꎬｅｔ ａｌ. Ａｍｍｏｎｉａ
ａｓ ａ ｆｕｅｌ ｉｎ ｓｏｌｉｄ ｏｘｉｄｅ ｆｕｅｌ ｃｅｌｌｓ[Ｊ] . Ｊｏｕｒｎａｌ ｏｆ Ｐｏｗｅｒ Ｓｏｕｒｃｅｓꎬ
２００３ꎬ１１８(１ / ２):３４２ － ３４８.

[１１３] 　 ＳＨＹ Ｓ ＳꎬＨＳＩＥＨ Ｓ ＣꎬＣＨＡＮＧ Ｈ Ｙ. Ａ ｐｒｅｓｓｕｒｉｚｅｄ ａｍｍｏｎｉａ￣ｆｕ￣
ｅｌｅｄ ａｎｏｄｅ￣ｓｕｐｐｏｒｔｅｄ ｓｏｌｉｄ ｏｘｉｄｅ ｆｕｅｌ ｃｅｌｌ: Ｐｏｗｅｒ ｐｅｒｆｏｒｍａｎｃｅ
ａｎｄ ｅｌｅｃｔｒｏｃｈｅｍｉｃａｌ ｉｍｐｅｄａｎｃｅ ｍｅａｓｕｒｅｍｅｎｔｓ [ Ｊ] . Ｊｏｕｒｎａｌ ｏｆ
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