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考虑设备性能衰退的风光氢储系统容量规划研究

王雨田１ꎬ２ꎬ郑骏杰３ꎬ李永毅３ꎬ张　 磊３
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摘　 要:针对风光发电的波动性与随机性导致的弃风弃光问题ꎬ以及电化学储能在长时、大规模储能中的技术经济

限制ꎬ提出一种基于氢储能的风光氢储一体化系统ꎬ旨在提升源荷平衡能力与可再生能源消纳水平ꎮ 通过构建计

及设备寿命期内性能衰退的高精度仿真模型ꎬ集成风机、光伏、电解槽、燃料电池及储氢罐的时序耦合特性ꎬ以年化

成本、缺电率和弃电率为优化目标ꎬ采用 ＮＳＧＡ￣Ⅱ算法求解帕累托前沿ꎬ并对比氢储能与电池储能的性能差异ꎮ 结

果表明:系统最优配置可实现年化成本 ４ ７７４ 万元ꎬ缺电率和弃电率分别降至 ２. ８６％与 １. １６％ ꎮ 长期场景下ꎬ氢储

能方案显著优于电池储能ꎬ主要表现在经济性提升 ２９. ７％ ꎬ供电可靠性提高 ２８. ７％ ꎬ可再生能源消纳率提升 ５％ ꎬ
电池储能方案更适用于短周期高频调节ꎻ氢储能可有效平抑风光出力时空波动ꎬ提升供电可靠性与可再生能源利

用率ꎬ为高比例可再生能源系统提供规模化长时储能路径ꎮ
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引　 言

为推进“双碳”目标ꎬ近年风电、光伏等可再生

能源发电快速发展ꎮ 据国家能源局统计ꎬ２０２４ 年底

我国风电和光伏累计装机达 ５. ２１ 亿 ｋＷ 和 ８. ８７ 亿

ｋＷꎬ合计约占总装机容量的 ４１. ７４％ ꎻ２０２５ 年 ２ 月

风光总装机首超火电ꎬ标志着能源结构转型获阶段

性突破[１ － ２]ꎮ 但风光出力强随机性与波动性导致源

－荷时空偏差显著ꎬ制约可再生能源消纳ꎮ 储能系

统作为平抑波动、平衡供需的关键ꎬ已成为高比例可

再生能源系统的刚性需求ꎮ
当前ꎬ锂离子电池等电化学储能因响应快、部署

灵活ꎬ成为短期调频调峰主流方案[３ － ４]ꎮ 但大规模

长周期储能下ꎬ其瓶颈凸显ꎬ主要表现在能量密度低

导致扩容占地大ꎬ热失控风险增加安全隐患[５] 以及

循环寿命短、容量衰减快使度电成本随规模扩大呈

指数级增长方面等方面[６]ꎮ 当区域电网的风光渗

透率突破 ３０％后ꎬ上述问题会变得更加显著ꎮ 亟需

新型储能技术突破规模化应用瓶颈ꎮ 相较之下ꎬ氢
储能通过电解水制氢ꎬ具备能量密度高、跨季节调节

能力突出及零碳循环特性显著等核心优势[７]ꎮ 尤

其在跨季节场景中ꎬ可平抑风光季节性波动ꎬ并通过

氢 －电双向转换实现多能耦合ꎬ使零碳能源系统具

备长周期调节能力ꎮ
氢储能技术通过电解水制氢的方式ꎬ将新能源

发电产生的盈余电力转化为氢能储存ꎮ 氢能与新能

源耦合系统的运行主要考虑:通过电解水制氢消纳

率风弃光ꎬ提升新能源的利用率以及通过“电 － 氢

－电”的双向转化平衡新能源出力与负荷需求ꎬ提
升系统稳定性ꎬ更适合孤岛运行[８]ꎮ Ｂａｂａｔｕｎｄｅ 等

人[９]对南非和尼日利亚的光伏、电池、氢储能系统

进行技术经济分析ꎬ证实电池与氢储能结合的系统

技术经济可行ꎬ但成本仍是氢储能的重大挑战ꎮ
Ｈａｈｏｌｕ 等人[１０]分析了利用电解水制氢实现离网系

统的新能源消纳的经济性ꎬ探索了离网场景的配置

组合ꎬ结果表明ꎬ电解槽消纳过剩新能源出力可有效

提升离网新能源系统经济性ꎮ 目前研究多停留在

“电 －氢”单向转换ꎬ打通“电 － 氢 － 电”双向转化ꎬ
在新能源出力不足时通过氢 － 电转换补能ꎬ可进一

步提升新能源供能体系下源荷匹配的灵活性ꎮ 当前

“氢 －电”转换技术主要包括燃气轮机掺氢燃烧与

燃料电池两类路线ꎮ 李永毅等人[１１] 设计了风光氢

储燃一体化系统ꎬ通过电解水制氢与掺氢比可调的

燃气轮机实现“电 －氢 － 电”双向耦合ꎬ可提升系统

灵活性、解决氢消纳ꎬ但存在 ＣＯ２ 排放ꎮ 并且燃料

电池分钟级启动较掺氢燃气轮机更适配平抑风光出

力秒级波动ꎮ 燃料电池作为氢电转换技术的氢储能

方式具有明显优势[１２]ꎮ
基于氢储能的新能源系统协同规划是提升系统

运行经济性和稳定性的关键ꎬ为了探索储能与新能

源系统的耦合特性ꎬ国内外学者针对新型多能耦合

系统配置优化进行了大量研究ꎮ Ｌｉａｎｇ 等人[１３] 探索

光伏与风电耦合系统供能特性ꎬ其在相同成本下供

电可靠性优于单一新能源发电单元ꎬ但仍未解决弃

风弃光问题ꎮ 蔡国伟等人[１４] 梳理了国内外风氢耦

合发电技术ꎬ构建了风 －氢耦合系统框架ꎬ提供了风

－氢耦合发电技术的发展建议ꎮ Ｄｅｇｕｅｎｏｎ 等人[１５]

在此基础上加入电池储能构成光伏、风能、电池综合

能源系统ꎬ可大幅缓解新能源灵活消纳问题并提升

供电稳定性ꎬ但电池寿命有限、长期经济性较差ꎮ 高

源等人[１６]将制 /储 /用氢环节纳入新能源规划ꎬ建立

全年时序模拟的氢储能新能源系统模型并开展协同

规划ꎬ结果显示ꎬ耦合氢储能后系统经济性与弃电率

优势显著ꎮ Ｌａｔａ￣Ｇａｒｃｉａ 等人[１７] 对光伏、水电、电池、
氢储能综合能源系统进行优化配置ꎬ获得初始投资、
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度电成本、运维成本最低及最大供电缺失约束下的

最佳方案ꎮ Ｐａｔｉｎ 等人[１８] 分析了包括光伏、电池、电
解槽、储氢罐和燃料电池的并网系统运行特性ꎬ评估

了其经济性和环境效益ꎮ
氢储能系统对于平抑源荷时空不平衡特性具有

显著优势ꎬ目前针对氢储能耦合新能源系统的规划

研究主要以典型日 －年度运行周期开展容量规划评

估ꎬ忽略了生命周期内设备性能非线性衰退带来的

影响ꎮ 此外ꎬ当前研究多以小时级时间尺度模拟ꎬ而
新能源出力间歇性、随机波动性强ꎬ时间分辨率直接

影响设备容量准确性ꎮ 鉴于此ꎬ本文提出了离网型

风光氢储一体化供能体系ꎬ建立了全生命周期高精

度仿真的风光氢储系统模型ꎬ构建了以年化成本、缺
电率和弃电率为优化目标的系统配置优化模型ꎬ采
用 ＮＳＧＡ￣Ⅱ非支配遗传算法优化配置ꎬ引入基于电

池储能的风光储系统作为对照ꎬ对比分析典型场景

下不同储能方式的新能源供能体系ꎬ揭示不同储能

方案的性能差异与配置机制ꎮ

１　 系统建模

１. １　 系统结构

本研究引入氢储能系统辅助新能源进行功率

调节ꎬ氢储能系统由电解槽、储氢罐和燃料电池构

成ꎬ具有能量密度高、存储周期长、无自衰减等优势ꎬ
能有效解决大规模新能源存储难题ꎮ 其中ꎬ电解

槽可将过剩电能转化为氢能存储ꎬ可显著降低弃风

弃光率ꎻ燃料电池作为备用电源ꎬ可在风电、光伏出

力不足时弥补用电缺口ꎮ 离网型风光氢储系统以及

作为对照的离网型风光电池储系统结构如图 １
所示ꎮ

图 １　 两种风光储系统结构

Ｆｉｇ. １ Ｓｔｒｕｃｔｕｒｅｓ ｏｆ ｔｈｅ ｔｗｏ ｗｉｎｄ￣ｓｏｌａｒ ｓｔｏｒａｇｅ ｓｙｓｔｅｍｓ

１. ２　 系统运行策略

风光氢储能系统的运行策略以提高新能源消纳

能力和保障电力系统稳定供电为核心目标ꎬ其典型

运行流程如图 ２ 所示ꎮ

图 ２　 风光氢储系统运行策略图

Ｆｉｇ. ２ Ｏｐｅｒａｔｉｏｎａｌ ｓｔｒａｔｅｇｙ ｄｉａｇｒａｍ ｏｆ ｔｈｅ ｗｉｎｄ￣ｓｏｌａｒ￣

ｈｙｄｒｏｇｅｎ ｓｔｏｒａｇｅ ｓｙｓｔｅｍｓ

系统首先实时监测环境参数与负荷需求ꎬ并基

于风电和光伏出力模型进行供需平衡分析ꎻ当新能

源发电功率超过负荷需求时ꎬ产生盈余功率ꎬ此时启

动电解槽制氢消纳富余电能ꎬ实际制氢功率取盈余

功率、电解槽最大运行功率及储氢罐最大可接纳功

率三者中的最小值ꎬ超出部分则视为弃风弃光功率ꎬ
所制备的氢气存储于储氢罐中ꎬ实现能量的时空转

移ꎻ当新能源出力不足以满足负荷需求时ꎬ系统出现

功率缺额ꎬ此时燃料电池将启动发电ꎬ其实际发电功

率由缺额功率、燃料电池额定功率及储氢罐当前最

大可供氢功率共同决定ꎬ取三者中的最小值ꎻ若燃料

电池的出力仍无法完全弥补功率缺额ꎬ系统将视作

存在供电缺口ꎬ需依赖外部电网补充ꎬ以维持电网稳
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定ꎮ 该运行策略通过电解槽与燃料电池的协调控

制ꎬ有效提升系统对波动性新能源的消纳能力ꎬ同时

增强电力供应的可靠性与灵活性ꎮ
１. ３　 部件数学模型

１. ３. １　 风力发电机

风力发电机工作原理主要是将风的动力势能经

过风机旋转转化为机械能ꎬ再由发电机将机械能转

化为电能ꎮ 风速是影响风力发电机输出功率的关键

因素ꎬ风力发电机的模型[１９]如式(１)所示:

ＰＷＴ(τ) ＝

０ ｖ(τ) < ｖｉｎ

ＰｒꎬＷＴ
ｖ(τ) － ｖｉｎ
ｖｒ － ｖｉｎ

ｖｉｎ ≤ ｖ(τ) ≤ ｖｒ

Ｐｒｖｒ ≤ ｖ(τ) ≤ ｖｏｕｔ
０ ｖ(τ) > ｖｏｕｔ

ì

î

í

ï
ï
ïï

ï
ï
ï

(１)

式中:ＰＷＴ(τ)—当前风机输出功率ꎬｋＷꎻｖ( τ)—当

前风机轮毂处实际风速ꎬｍ / ｓꎻｖｉｎꎬｖｏｕｔꎬｖｒ—风机切入

风速、切出风速和额定风速ꎬｍ / ｓꎻＰｒꎬＷＴ—风机额定

输出功率ꎬｋＷꎮ
风力发电机性能会受叶片磨损、自然侵蚀和疲

劳等多种因素的影响而逐渐下降[２０ － ２４]ꎮ 本文引入

风机衰退因子 ｆＷＴ来表示风机发电性能的整体衰退ꎮ
风机性能衰退的本质是核心部件长期运行后的物理

损耗ꎬ而这类损耗在正常运维条件下呈渐进式、均匀

性特征ꎬ与线性衰退规律高度契合ꎬ因此设定风机的

性能每年线性衰退[２５]ꎮ 风机衰退因子计算方法如

式(２) ~式(３)所示:

ｆＷＴ ＝ １ － ＤＷＴτＷＴ

８ ７６０
æ
è
ç

ö
ø
÷ (２)

Ｐ′ＷＴ(τ) ＝ ＰＷＴ(τ) ｆＷＴ (３)
式中:ＤＷＴ—风机性能衰退率ꎬ取值为 １. ８％ /年[２６]ꎻ
τＷＴ—风机的运行时长ꎬｈꎻＰ′ＷＴ—考虑性能衰退的风

机输出功率ꎬｋＷꎮ
１. ３. ２　 太阳能光伏板

太阳能光伏板可利用半导体材料在光照下的光

电伏特效应将太阳能转换为电能ꎬ其直流输出功率

依赖于太阳辐射强度、吸收能力、面板面积和电池

温度ꎮ 太阳能光伏板的数学模型[２７ － ２８] 如式(４) ~
式(５)所示:

ＰＰＶ(τ) ＝ Ｇ(τ)
１ ０００Ｐｒ＿ＰＶηＰＶ[１ － β( ｔｃ(τ) － ｔｃꎬｓｔｃ)]

(４)

ｔｃ(τ) ＝ ｔ(τ) ＋ λｃＧ(τ) (５)
式中:ＰＰＶ(τ)—当前光伏电池输出功率ꎬｋＷꎻＰｒ＿ＰＶ—
光伏电池额定功率ꎬ ｋＷꎻ ηＰＶ—功率降低系 数ꎻ
Ｇ(τ)—当前光照强度ꎬｋＷ / ｍ２ꎻβ—功率温度系数ꎻ
ｔｃ(τ)—当前光伏电池温度ꎬ℃ꎻ ｔｃꎬｓｔｃ—标准环境温

度ꎬ℃ꎻｔ( τ)—当前环境温度ꎬ℃ꎻλｃ—辐射温度系

数ꎬ取 ０. ０２５ꎮ
光伏板的发电能力会因模块退化、电池开裂及

太阳能板腐蚀等因素而逐渐下降ꎮ 为了全面评估光

伏性能的退化ꎬ引入光伏功率因子 ｆＰＶꎮ 光伏板衰退

源于封装材料老化、电池片腐蚀等渐进式均匀损耗ꎬ
无显著非线性突变ꎬ故假设其性能呈线性衰退[２９]ꎮ

光伏功率因子的计算方式如式(６) ~ 式(７)
所示:

ｆＰＶ ＝ １ － ＤＰＶτＰＶ

８ ７６０
æ
è
ç

ö
ø
÷ (６)

Ｐ′ＰＶ(τ) ＝ ＰＰＶ(τ) ｆＰＶ (７)
式中:ＤＰＶ—太阳能光伏板的性能衰退率ꎬ取值为

２􀆰 ０％ /年[２９]ꎻτＰＶ—太阳能光伏板的运行时长ꎬ ｈꎻ
Ｐ′ＰＶ—考虑性能衰退的光伏输出功率ꎬｋＷꎮ
１. ３. ３　 电解槽

电解槽的工作原理是基于直流电驱动下的氧化

还原反应ꎬ当外部直流电源施加于电解槽的阳极和

阴极时ꎬ电解质中的离子发生定向迁移ꎬ并在电极 －
溶液界面处发生电化学反应ꎮ 单个电解反应器的实

际工作电压除理论分解电压外ꎬ还需克服电极过电

位、电解质内阻及接触电阻等引起的额外电压损失ꎬ
其值通常高于理论值ꎬ并随电流密度、温度及电极状

态的改变而变化ꎮ
考虑电解槽性能衰减的制氢效率计算式为:
εｅｌｅｃ ＝ εＵεＩ (８)

式中:εｅｌｅｃ—制氢效率ꎻεＵ—电解槽电压效率ꎻεＩ—动

态电流效率ꎮ
电解电压计算方法为:
ＵＰ ＝ ＵｏｃｖꎬＰ ＋ ＵａｃｔꎬＰ ＋ ＵｄｉｆｆꎬＰ ＋ ＵｏꎬＰ (９)

式中:ＵｏｃｖꎬＰ—电解槽开路电压ꎬＶꎻＵａｃｔꎬＰ—电解槽活

化过电压ꎬＶꎻＵｄｉｆｆꎬＰ—电解槽扩散过电压ꎬＶꎻＵｏꎬＰ—
电解槽欧姆过电压ꎬＶꎮ

开路电压的计算方法为:

ＵｏｃｖꎬＰ ＝ Ｕ０ ＋
ＲＴＰ

２Ｆ ｌｎ αＨ２
αＯ２

αＨ２Ｏ

æ

è
ç

ö

ø
÷ (１０)
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式中:Ｒ—气体常数ꎬ取 ８. ３１４ Ｊ / (ｍｏｌ􀅰Ｋ)ꎻＴＰ—电解

槽温度ꎬＫꎻＦ—法拉第常数ꎻＵ０—标况下反应时的可

逆电压ꎬＵ０ ＝ １. ２２９ － ０. ９ × １０ － ３􀅰(ＴＰ － ２９８. １５)ꎻ
αＨ２

ꎬαＯ２
和 αＨ２Ｏ—氢气、氧气和水的活度ꎮ

电解槽活化过电压的计算方法为:

ＵａｃｔꎬＰ ＝
ＲＴＰ

αａｎＦ
ｌｎ ｊ

２ｊ０ꎬａｎ
＋ １ ＋ ｊ

２ｊ０ꎬａｎ
( )

２æ

è
ç

ö

ø
÷＋

ＲＴＰ

αｃａｔＦ
ｌｎ ｊ

２ｊ０ꎬｃａｔ
＋ １ ＋ ｊ

２ｊ０ꎬｃａｔ
( )

２æ

è
ç

ö

ø
÷ (１１)

式中:αａｎ和 αｃａｔ—阳极和阴极的电荷转移系数ꎻｊ—

阴极和阳极的电流密度ꎬＡ / ｃｍ２ꎻｊ０ꎬａｎ和 ｊ０ꎬｃａｔ—阳极和

阴极的交换电流密度ꎬＡ / ｃｍ２ꎮ
扩散过电压的计算方法为:

ＵｄｉｆｆꎬＰ ＝
ＲＴＰ

４Ｆ ｌｎ ＣＯ２ꎬａｎ

ＣＯ２ꎬａｎ０

æ

è
ç

ö

ø
÷＋

ＲＴＰ

２Ｆ ｌｎ ＣＨ２ꎬｃａｔ

ＣＨ２ꎬｃａｔ０

æ

è
ç

ö

ø
÷ (１２)

ＣＯ２ꎬａｎ ＝
ｐａｎｎＯ２

(ｎＯ２
＋ ｎＨ２Ｏꎬａｎ)ＲＴＰ

＋
δａｎ

Ｄｅｆｆꎬａｎ
ｎＯ２

(１３)

ＣＨ２ꎬｃａｔ ＝
ｐｃａｔｎＨ２

(ｎＨ２
＋ ｎＨ２Ｏꎬｃａｔ)ＲＴＰ

＋
δｃａｔ

Ｄｅｆｆꎬｃａｔ
ｎＨ２

(１４)

式中:ＣＯ２ꎬａｎꎬＣＨ２ꎬｃａｔ—运行时阳极氧气摩尔浓度和阴

极氢气浓度ꎬｍｏｌ / ｍ３ꎻＣＯ２ꎬａｎ０ꎬＣＨ２ꎬｃａｔ０—阳极氧气参考

浓度和阴极氢气参考摩尔浓度ꎬｍｏｌ / ｍ３ꎻｐａｎ、ｐｃａｔ—阳

极和阴极的工作压力ꎬＭＰａꎻｎＨ２
ꎬｎＯ２

—氢气和氧气的

摩尔流量ꎬｍｏｌ / ｓꎻｎＨ２ＯꎬａｎꎬｎＨ２Ｏꎬｃａｔ—阳极水和阴极水的

摩尔流量ꎬｍｏｌ / ｓꎻδａｎꎬδｃａｔ—阳极和阴极的电极厚度ꎬ

μｍꎻＤｅｆｆꎬａｎꎬＤｅｆｆꎬｃａｔ—阴极和阳极的扩散系数ꎬｍ２ / ｓꎮ
电解槽欧姆过电压的计算方法为:

ＵｏꎬＰ ＝ δｍ
ｊ
σｍ

(１５)

式中:δｍ—质子交换膜的厚度ꎬμｍꎻσｍ—质子交换

膜的电导率ꎬＳ / ｍꎮ
随运行时间的推移ꎬ因氟化物释放导致质子交

换膜厚度变化、电解质电导率下降等原因引起电解

槽性能的衰退ꎬ质子交换膜的厚度随时间变化规

律[３０]为:

δｍ ＝ δｍ０ －
ＧＲ ｔｅ
ρｆρｍ

(１６)

δｍ０ ＝ (０. ５１３９θ － ０. ３２６)ｅ[１２６８(１ / ３０３ －１ / ｔｅ)] (１７)
式中:δｍ０—为初始膜厚度ꎬμｍꎻＧＲ—电解水反应中

氟化物的平均释放率ꎬｋｇ / (ｈ􀅰ｍ２)ꎻｔｅ—电解槽工作

温度ꎬＫꎻχ ｆ—质子交换膜的氟化物含量占比ꎻρｍ—质

子交换膜密度ꎬｋｇ / ｍ３ꎻθ—每个硫酸盐位点的水分

子数ꎮ
电解质电导率随时间变化为[３１]:

σｍ ＝ σｍ０
δｍ

δｍ０

æ
è
ç

ö
ø
÷

２

(１８)

式中:σｍ０—质子交换膜初始电导率ꎬＳ / ｍꎮ
电解槽电压效率 εＵ 的计算式为:
εＵ ＝ Ｕ０ / ＵＰ (１９)
根据法拉第电解定律ꎬ可得:
ｎＨꎬｌｏｓｓ ＝ Ｉｌｏｓｓ / (２Ｆ) (２０)

式中:ｎＨꎬｌｏｓｓ—电解槽损失氢气的摩尔流量ꎬｍｏｌ / ｓꎻ
Ｉｌｏｓｓ—电解槽损失的电流ꎬＡꎮ

根据菲克定律ꎬ从阴极渗透到阳极的氢气的扩

散通量 ＪＨꎬｌｏｓｓ为:
ＪＨꎬｌｏｓｓ ＝ ＡＤＨＳＨΔｐ / δｍ (２１)

式中ꎬＡ—质子交换膜面积ꎬｃｍ２ꎻΔｐ—两极板压力

差ꎬＰａꎻＤＨ—氢气在电解槽内的扩散系数ꎻＳＨ—氢气

的溶解度系数ꎮ
ＤＨ和 ＳＨ的计算式如下:

ＤＨ ＝ ０ . ０００００１２３ｅ －２ ６０２ / ＴＰ (２２)

ＳＨ ＝ Ｍｗ / (１０９０００λＭＨｅ７７ / ＴＰ) (２３)
式中:Ｍｗ—质子交换膜的摩尔质量ꎬｋｇ / ｍｏｌꎮ

由于电解槽内的氢气主要损失于氢气渗透到阳

极隔间ꎬ可近似认为[３２]:
ｎＨꎬｌｏｓｓ ＝ ＪＨꎬｌｏｓｓ (２４)
Ｉｌｏｓｓ ＝ ２ＦＡＤＨＳＨΔｐ / δｍ (２５)
因此动态电流效率的计算式为:

εＩ ＝ １ －
２ＦＡＤＨＳＨΔｐ

ｊｅδｍ
(２６)

式中:ｊｅ—初始电流密度ꎬＡ / ｍ２ꎮ
由此电解槽产氢速率 θＨ２

计算式如下:

θＨ２
＝

εｅｌｅｃＭＨ２
Ｐ ｉｎ

ＨＨＶＨ２
ρＳＴＰ
Ｈ２

(２７)

式中:Ｐ ｉｎ—电解槽输入功率ꎬｋＷꎻＭＨ２
—氢气的摩尔

质量ꎬｋｇ / ｍｏｌꎻＨＨＶＨ２
—高位发热量ꎬ取值为 ２８５. ８４

ｋＪ / ｍｏｌ:ρＳＴＰ
Ｈ２

—标准态氢气密度ꎬ取值为 ０. ０８９ ９

ｋｇ / Ｎｍ３ꎮ
将质子交换膜燃料电池(ＰＥＭＥＣ)模型的仿真

结果与文献[３３]的实验数据进行比较ꎬ通过调整参
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数来验证 ＰＥＭＥＣ 模型的可靠性和准确性ꎮ 模型验

证的具体结果如图 ３ 所示ꎮ 由图 ３ 可知ꎬ仿真结果

与实验结果的相对误差控制在 ± ２％以内ꎬ表明该模

型具有较高的可靠性和精确性ꎮ

图 ３　 ＰＥＭＥＣ 模型验证对比图

Ｆｉｇ. ３ Ｃｏｍｐａｒｉｓｏｎ ｃｈａｒｔ ｏｆ ＰＥＭＥＣ ｍｏｄｅｌ ｖａｌｉｄａｔｉｏｎ

１. ３. ４　 燃料电池

燃料电池的工作原理是通过氧化还原反应将氢

能的化学能转化为电能ꎮ 对于 ＰＥＭＦＣ 的输出电压

计算ꎬ我们采用了文献[３４]中提出的广义稳态电化

学模型ꎬ单电池电压 ＵＦ的计算方法为:
ＵＦ ＝ Ｅｎｅｒｎｓｔ ＋ ＵａｃｔꎬＦ ＋ ＵｏꎬＦ ＋ ＵｃꎬＦ (２８)

式中:Ｅｎｅｒｎｓｔ—能斯特电压ꎬＶꎻＵａｃｔꎬＦ—燃料电池活化

电压ꎻＵｏꎬＦ—燃料电池欧姆过电压ꎻＵｃꎬＦ—燃料电池

浓差过电压ꎬＶꎮ
能斯特电压[３５]的计算方法为:
Ｅｎｅｒｎｓｔ ＝ １. ２２９ － ０. ８５ × １０ －３(ＴＦ － ２９８. １５) ＋

４􀆰 ３０８ ５ × １０ －５ＴＦ[ｌｎ(ｐＨ２
) ＋ ０. ５ｌｎ(ｐＯ２

)] (２９)

式中:ＴＦ—燃料电池的工作温度ꎬＫꎻｐＨ２
和 ｐＯ２

—阴极

和阳极的气体分压ꎬＰａꎮ
燃料电池活化过电压的计算方法为:
ＵａｃｔꎬＦ ＝ ξ１ ＋ ξ２ＴＦ ＋ ξ３ＴＦ[ｌｎ(ＣＯ２

)] ＋

ξ４ＴＦ[ｌｎ( ｊＦ)] (３０)
ξ２ ＝ σｃｅｌｌ ＋ ０. ００２ ８６ ＋ ０. ０００ ２ｌｎ(ＡＦ) ＋

０. ０００ ０４３ｌｎ(ＣＨ２
) (３１)

ＣＯ２
＝ ｐＯ２

/ (５ ０８０ ０００ｅ
－４９８
ＴＦ ) (３２)

ＣＨ２
＝ ｐＨ２

/ (１ ０９０ ０００ ｅ
７７
ＴＦ) (３３)

式中: ξ１ꎬ ξ３ꎬ ξ４—经验参数ꎬ取值分别为 ０. ８５３、
－ ０􀆰 ０００ １和 ０. ０００ ２ꎻ ｊＦ—流过燃料电池的电流密

度ꎬＡ / ｃｍ２ꎻσｃｅｌｌ—电解质的电导率ꎬＳ / ｍꎻＡＦ—燃料

电池的有效活化面积ꎬｃｍ２ꎻＣＯ２
和 ＣＨ２

—氧气溶解度

与氢气溶解度ꎬｍｏｌ / ｍ３ꎮ
燃料电池欧姆过电压[３４]的计算方法为:
ＵｏꎬＦ ＝ Ｕｅ

ｏ ＋ Ｕｐ
ｏ ＝ － ＩＦ(Ｒｅ ＋ Ｒｐ) (３４)

Ｒｐ ＝
ｒＭδｍ

ＡＦ
(３５)

ｒＭ ＝
１８１.６[１ ＋０.０３ｊＦ ＋０.０６２ (ＴＦ / ３０３)２]ｊＦ２. ５

(φＦ －０. ６３４ －３ｊＦ)ｅｘｐ[３. ２５(ＴＦ －３０３) / ＴＦ]
(３６)

式中:Ｕｅ
ｏ—电极欧姆电压ꎬＶꎻＵｐ

ｏ—交换膜欧姆电压ꎬ

ＶꎻＲｅ—电极电阻ꎬΩꎻＲｐ—膜电阻ꎬΩꎻｒＭ—质子交换

膜电阻率ꎬ１ / ΩꎻφＦ—质子交换膜的含水量ꎬｍｏｌ / ｍ３ꎮ
燃料电池浓差过电压的计算方法如下:

ＵｃꎬＰ ＝ － Ｂｌｎ １ －
ｊＦ
ｊｍａｘ

æ
è
ç

ö
ø
÷ (３７)

式中:Ｂ—经验参数ꎬ取 １. ６ꎻ ｊｍａｘ—燃料电池的最大

电流密度ꎬＡ / ｃｍ２ꎮ
催化剂老化、膜老化、燃料和氧气供应不均、操

作温度以及压力等因素均会影响 ＰＥＭＦＣ 的性能ꎬ
本文主要考虑催化剂老化和膜老化失水两种主要因

素ꎮ 随着工作时长的增加ꎬ催化剂活性下降导致燃

料电池活化损失增加[３６]ꎬ质子交换膜的含水量下

降ꎬ使燃料电池的内阻增加[３７]ꎬ从而导致欧姆损失

增加[３８]ꎮ
而电解质的电导率及膜含水量降解率计算式

如下:

σｃｅｌｌ ＝ ζＤＲꎬσ
τＦ

ＴＦ
＋ σ０

ｃｅｌｌ (３８)

φＦ ＝ φ０ ＋ ζＤＲꎬφτＦ (３９)

式中:φ０
ｃｅｌｌ—初始时刻电解质电导率ꎻｋＤＲꎬσ—催化活性

变化 引 起 的 电 导 率 变 化 速 率ꎬ取 值 为 － ０. ０５５
μＶＫｈ －１ [３８]ꎻτＦ—燃料电池的工作时长ꎬｈꎻζＤＲꎬφ—膜

含水量的变化速率ꎬ取值为 － ０. ０００ ７ｈ － １ꎻφ０—初始

时刻膜含水量[３８]ꎮ
得到燃料电池效率计算式如下:
εｆ ＝ μｆＵｃｅｌｌ / １. ４８ (４０)

式中:μｆ—燃料利用率ꎬ取 ０. ９５ꎻ
最后得到氢气的消耗速率 ϑＨ２

ꎬ计算式如下:

ϑＨ２
＝

ＭＨ２
Ｐｎｅｅｄ

ＨＨＶＨ２
εｆ ρＳＴＰ

Ｈ２

(４１)
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式中:Ｐｎｅｅｄ—燃料电池功率ꎬｋＷꎮ
为了验证本模型的准确性ꎬ我们通过调整电

池的参数ꎬ并与文献[３８]中的实验数据对比ꎬ结果

如图 ４ 所示ꎮ 由图 ４ 可知ꎬ模拟获得的极化曲线

与参考数据(图中散点)高度一致ꎬ实验与模拟结果

相对误差不超过 ± １％ ꎬ表明模型准确性、可靠性

较高ꎮ

图 ４　 ＰＥＭＦＣ 模型验证对比

Ｆｉｇ. ４ Ｃｏｍｐａｒｉｓｏｎ ｃｈａｒｔ ｏｆ ＰＥＭＦＣ ｍｏｄｅｌ ｖａｌｉｄａｔｉｏｎ

１. ３. ５　 储氢罐

基于 ＰＥＭＥＣ 的特性ꎬ本文选择低压储氢罐(压
力为 ３ ＭＰａ)作为储氢设备ꎬ不需要额外的压缩机ꎬ
因此储氢罐的储氢量计算方法为:
Ｖｔａｎｋ(τ) ＝ Ｖｔａｎｋ(τ － １) ＋ Ｖｉｎ(τ － １) － Ｖｏｕｔ(τ － １)

(４２)

式中:Ｖｔａｎｋ(τ)和 Ｖｔａｎｋ(τ － １)—τ 和 τ － １ 时间段储

氢罐内氢气的量ꎬＮｍ３ꎻＶｉｎ(τ － １)和 Ｖｏｕｔ(τ － １)— τ

到 τ － １ 时间段储氢罐存入和流出的氢气量ꎬＮｍ３ꎮ
１. ３. ６　 锂电池

锂电池的荷电状态(ＳＯＣ)定义为电量与电池容

量的比率ꎬ其计算方法如下[３９]ꎮ
ＳＯＣ(τ) ＝ ＳＯＣ(τ － １) ＋

ηｃｈＰｃｈ(τ) －
Ｐｄｉｓ(τ)
ηｄｉｓ

[ ] × Δτ / ＱＢＡＴ (４３)

式中:Δτ—时间步长ꎬ设置为 ０. ２５ ｈꎻηｃｈ和 ηｄｉｓ—为充

电效率和放电效率ꎻＰｃｈ(τ)和 Ｐｄｉｓ(τ)—为 τ 时刻充

电功率和放电功率ꎬｋＷꎻＱＢＡＴ—电池容量ꎬｋＷ􀅰ｈꎮ
电池的健康状态可以通过健康状态( ＳＯＨ)描

述ꎬ计算方法如下:
ＳＯＨ(τ) ＝ １ － (ＳＯＨａ － ＳＯＨｂ)􀅰ＡＧＥα (４４)

　 　 ＡＧＥｃａｌ(τ) ＝ ６. ６１４ ８ × １０ －６ ＋ ＳＯＣ(τ) ＋

４. ６４０ ４ × １０ －６ (４５)

ＡＧＥｃｙｃ(τ) ＝ ０. ５ ×
ηｃｈＰｃｈ(τ) －

Ｐｄｉｓ(τ)
ηｄｉｓ

􀅰Δτ

Ｌｃｙｃ􀅰Ｃｂａｔ
(４６)

式中:ＳＯＨａ 和 ＳＯＨｂ—为 １００％ 和 ８０％ 的电池健康

状态ꎻ ＡＧＥα—整体老化的程度ꎬ 分为日历老化

ＡＧＥｃａｌ和循环老化 ＡＧＥｃｙｃꎻＬｃｙｃ—ＳＯＨ 达到 ８０％时电

池的循环寿命ꎮ

２　 配置优化策略

２. １　 决策变量

本研究的目的是结合运行策略确定每个组件的

最佳容量ꎬ从而实现评价指标之间的权衡ꎮ 因此ꎬ本
文的风 －光 － 氢 － 储系统决策变量 Ｘ 包括系统中

每个设备的装机容量及储氢时长ꎬ如式(４７)所示:
Ｘ ＝ [ＱＷＴꎬＱＰＶꎬＱＰꎬＱＦꎬτＨ２

] (４７)
式中:ＱＷＴ—风机装机容量ꎬｋＷꎻＱＰＶ—光伏装机容

量ꎬｋＷꎻＱＰ—电解槽装机容量ꎬｋＷꎻ ＱＦ—燃料电池装

机容量ꎬｋＷꎻτＨ２
—储氢时长ꎬｈꎬ指按照配置电解槽装

机容量满负荷运行的产氢流量来存储氢气的时长ꎮ
这种设计使储氢容量 ＱＨＳＴ受电解槽装机容量

ＱＰ和储氢时长 τＨ２
两种因素控制ꎬ如式(４８)所示:

ＱＨＳＴ ＝ τＨ２
ＱＰ / ωｅｌ (４８)

式中:ωｅｌ—电解槽的额定制氢电耗ꎬ(ｋＷ􀅰ｈ) / Ｎｍ３ꎮ
该方法能够确保在电解槽装机容量较大或较小

时ꎬ设计出与之匹配的储氢容量ꎬ从而保证系统能够

在一定时间范围内存储氢气ꎮ
２. ２　 目标函数

目前ꎬ风光氢储能系统在实际应用中仍面临若

干关键挑战ꎬ主要包括:系统初始投资与运维成本较

高ꎬ风光资源的间歇性与波动性导致能源供应不稳

定以及风光发电出力与用户负荷需求之间存在时空

偏差ꎮ 上述因素引发功率不平衡、弃风弃光或供电

可靠性下降等问题ꎮ 为系统性地应对上述问题ꎬ本
文以提升系统经济性、供电可靠性与能源利用效率

为核心ꎬ构建了 ３ 个优化目标函数ꎬ分别为系统年化

总成本(表征经济性)、缺电率(表征供电可靠性)和
弃电率(表征能源利用效率)ꎮ

采用 ＮＳＧＡ￣Ⅱ算法对系统设备进行容量配置多

目标优化ꎬ计算流程如图 ５ 所示ꎮ
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算法基本思想:随机生成规模为 Ｎ 的初始种群ꎬ
经非支配排序及选择、交叉、变异得第一代子代ꎻ合并

两代种群ꎬ经非支配排序与拥挤度计算筛选新父代ꎻ
再通过遗传操作生成新子代ꎬ迭代至满足终止条件ꎮ

图 ５　 ＮＳＧＡ￣Ⅱ算法流程图

Ｆｉｇ. ５ Ｆｌｏｗｃｈａｒｔ ｏｆ ＮＳＧＡ￣Ⅱ ａｌｇｏｒｉｔｈｍ

采用上述算法进行帕累托前沿求解与决策分

析ꎮ 具体目标函数表达式如下:
Ｔａｒｇｅｔ ＝ {ｍｉｎ(Ｌ)ꎬｍｉｎ(Ｙ)ꎬｍｉｎ(Ｄ)} (４９)

式中:Ｌ—系统年化成本ꎬ元ꎻＹ—缺电率ꎬ％ ꎻＤ—弃

电率ꎬ％ ꎮ
２. ２. １　 年化成本

系统年化成本(Ａｎｎｕａｌｉｚｅｄ ＣｏｓｔꎬＡＣ)是衡量风

光氢储能系统经济性的核心指标ꎬ其计算基于 ２０ 年

的全生命周期ꎬ且在本研究中不考虑设备到期后的

重置成本ꎮ 该系统年化成本主要由初始投资成本

Ｃｃａｐ和运行与维护成本 Ｃｏｍ两部分构成ꎮ 具体计算

方法[４０]如下:
Ｌ ＝ ψ(Ｃｃａｐ ＋ Ｃｏｍ) (５０)

ψ ＝ ｒ (１ ＋ ｒ) ｙ

(１ ＋ ｒ) ｙ － １
(５１)

式中:ψ—资本回收系数ꎻｒ—利率ꎬ取 ０. １ꎻｙ—系统

的运行生命周期ꎬ设定为 ２０ 年ꎮ
风光氢储能系统的年化成本主要包括风机、光

伏、电解槽、燃料电池和储氢罐的采购和安装成本、
运行和维护成本ꎬ以风机为例:

ＬＷＴ ＝ ψ(ＣｃａｐꎬＷＴ ＋ ＣｏｍꎬＷＴ) (５２)
ＣｃａｐꎬＷＴ ＝ ｋＷＴ􀅰ＱＷＴ (５３)

ＣｏｍꎬＷＴ ＝ αＷＴＱＷＴ􀅰∑
２０

ｙ ＝ １

１ ＋ ０. ０４
１ ＋ ｒ( )

ｙ
　 (５４)

式中:ＬＷＴ—风机系统年化成本ꎬ元ꎻｋＷＴ—风机初始

投资成本ꎬ元 / ｋＷꎻ αＷＴ—风机运行和维护成本ꎬ
元 / ｋＷꎮ
２. ２. ２　 缺电率

系统的缺电率(Ｌｏｓｓ ｏｆ Ｐｏｗｅｒ Ｓｕｐｐｌｙ Ｐｒｏｂａｂｉｌｉｔｙꎬ
ＬＰＳＰ)定义为总缺电功率与总负荷需求功率之比ꎬ
其计算方法如下:

Ｙ ＝
∑
ｔ∈Ｔ

Ｐｇｒｉｄ(τ)

∑
ｔ∈Ｔ

ＰＬＯＡＤ(τ)
× １００％ (５５)

式中:Ｐｇｒｉｄ ( τ)— τ 时刻由电网补充的功率ꎬｋＷꎻ
ＰＬＯＡＤ(τ)— τ 时刻负荷需求功率ꎬｋＷꎮ
２. ２. ３　 弃电率

系统的弃电率(Ｐｏｗｅｒ Ａｂａｎｄｏｎｍｅｎｔ ＲａｔｅꎬＰＡＲ)
定义为总弃电功率与新能源总发电功率之比ꎬ其计

算方法如下:

Ｄ ＝
∑
ｔ∈Ｔ

ＰＷＡＳＴＥ(τ)

∑
ｔ∈Ｔ

ＰＷＴ(τ) ＋ ＰＰＶ(τ)( )
× １００％ (５６)

式中:ＰＷＡＳＴＥ(τ)—τ 时刻系统的弃电功率ꎬｋＷꎮ
２. ３　 约束条件

２. ３. １　 电力平衡约束

ＰＷＴ(τ) ＋ ＰＰＶ(τ) ＋ ＰＦＣ(τ) ＋ Ｐｇｒｉｄ(τ) ＝
ＰＬＯＡＤ(τ) ＋ ＰＥＬ(τ) (５７)
式中:ＰＷＴ(τ)ꎬＰＰＶ(τ)ꎬＰＦＣ(τ)—τ 时刻风电、光伏、
燃料电池的实际输出功率ꎬｋＷꎻＰＥＬ(τ)— τ 时刻电

解槽输出功率ꎬｋＷꎮ
２. ３. ２　 风光发电功率约束

ＰＷＴ(τ) ＝ ＰｒꎬＷＴ(τ) － ＰｃꎬＷＴ(τ)

ＰＰＶ(τ) ＝ ＰｒꎬＰＶ(τ) － ＰｃꎬＰＶ(τ)
{ (５８)

式中:ＰｒꎬＷＴ(τ)ꎬＰｒꎬＰＶ(τ)—τ 时刻风电、光伏的预测

出力ꎬｋＷꎻＰｃꎬＷＴ(τ)ꎬＰｃꎬＰＶ(τ)—τ 时刻风电、光伏的

弃电功率ꎬｋＷꎮ
２. ３. ３　 电解槽与燃料电池运行约束

电解槽和燃料电池的功率应该被限制在其最大
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功率范围内ꎬ且不低于最低启动功率[４１ － ４４]ꎬ表达式

如下:
ＰＥＬꎬｍｉｎ < ＰＥＬ(τ) < ＰＥＬꎬｍａｘ

ＰＦＣꎬｍｉｎ < ＰＦＣ(τ) < ＰＦＣꎬｍａｘ
{ (５９)

式中:ＰＥＬꎬｍｉｎꎬＰＦＣꎬｍｉｎ—是电解槽和燃料电池的最小

功率ꎬｋＷꎻＰＥＬꎬｍａｘꎬＰＦＣꎬｍａｘ—是电解槽和燃料电池的

最大功率ꎬｋＷꎮ
２. ３. ４　 储氢罐存放氢约束

本研究中ꎬ考虑到质子交换膜电解槽的制氢特

性ꎬ选取压力为 ３ ＭＰａ 的低压储氢球罐用于氢气存

储ꎮ 在保持储氢体积不变的情况下ꎬ通过调节压力

ｐｔａｎｋ(τ)来确定储氢罐的充放容量的上下限ꎬ储氢压

力上限为 ２. ７ ＭＰａꎬ下限为 ０. ２ ＭＰａꎮ
２. ３. ５　 弃电率与供电可靠性约束

在风光储系统中ꎬ系统的新能源利用率和系统

供电可靠性是评价系统的关键指标ꎬ高供电缺失率

和弃电率不利于系统的可持续发展ꎬ因此ꎬ本研究对

弃电率及供电缺失率设定一个阈值:
０ < Ｄ < ２０％
０ < Ｙ < ２０％{ (６０)

３　 算例分析

３. １　 算例背景

本研究以中国西北某地区的实际气象资料与负

荷数据为基础ꎬ数据时间分辨率为 １５ ｍｉｎꎮ 模拟系

统在生命周期 (２０ 年) 内的运行状况ꎬ并假定各

年的气象条件与负荷需求模式与基准年保持一致ꎮ
该区域全年气象条件与负荷的变化规律如图 ６ 所

示ꎮ 由图 ６ 可知ꎬ该地区风速基本在 ０ ~ ２２ ｍ / ｓ 范

围内波动ꎬ年均风速 ７. ５６ ｍ / ｓꎬ表现出较强的随机

性ꎻ环境温度在 － １５ ~ ４０ ℃ 之间波动ꎬ年均温度

２２􀆰 ６ ℃ꎬ季节性差异显著ꎻ太阳辐射强度在 ０ ~
１ ０５０ Ｗ / ｍ２之间ꎬ呈现典型的季节特征ꎮ 电力负荷

方面ꎬ负荷极差大ꎬ年平均负荷为 ２ ７４７ ｋＷꎬ最小负

荷 ５７１ ｋＷꎬ最大负荷 ４ ６８２ ｋＷꎬ并呈现明显峰谷波

动ꎬ春、冬季需求较低ꎬ夏、秋季较高ꎬ昼夜差异显著ꎬ
日间负荷普遍较高ꎬ用电高峰多出现在 １４:００ ~１９:００ꎬ
夜间负荷较低ꎬ用电低谷集中于 ０２:００ ~ ０８:００ꎬ整
体呈周期性变化ꎮ

图 ６　 全年气象与负荷的变化规律

Ｆｉｇ. ６ Ｃｈａｎｇｅｓ ｉｎ ａｎｎｕａｌ ｍｅｔｅｏｒｏｌｏｇｉｃａｌ ａｎｄ ｌｏａｄ

３. ２　 优化设置

本文对风光氢储能系统与风光电化学储能系统

两种技术方案进行了对比分析ꎬ以保障该区域供电稳

定性并最大化新能源的消纳水平ꎮ 为全面评估两类

系统在经济性与可靠性ꎬ选用 ＮＳＧＡⅡ̄多目标遗传算

法对系统容量配置进行优化求解ꎮ 算法参数设置如

表 １ 所示ꎮ 风光储系统容量约束上下限如表 ２ 所示ꎮ
表 １　 算法参数配置

Ｔａｂ. １ Ａｌｇｏｒｉｔｈｍ ｐａｒａｍｅｔｅｒ ｃｏｎｆｉｇｕｒａｔｉｏｎ

参　 数 数　 值

种群大小 ５００

进化代数 ３０

交叉概率 ０. ８

变异概率 ０. ０１
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表 ２　 风光储系统容量参数范围

Ｔａｂ. ２ Ｃａｐａｃｉｔｙ ｐａｒａｍｅｔｅｒ ｒａｎｇｅ ｏｆ ｗｉｎｄ￣ｓｏｌａｒ
ｓｔｏｒａｇｅ ｓｙｓｔｅｍｓ

决策变量 范围

风机容量 / ｋＷ [０ꎬ１５ ０００]

光伏容量 / ｋＷ [０ꎬ１５ ０００]

电解槽容量 / ｋＷ [０ꎬ１５ ０００]

燃料电池容量 / ｋＷ [０ꎬ１５ ０００]

储氢时长 / ｈ [０ꎬ２００]

电池容量 / (ｋＷ􀅰ｈ) [０ꎬ３ ０００ ０００]

３. ３　 容量配置优化结果

通过多目标优化算法的仿真求解ꎬ共得到 １７５
组非劣最优解ꎬ共同构成了风光氢储能系统三目标

协同优化的帕累托前沿ꎮ 该帕累托前沿及其在三目

标空间中的投影分布如图 ７ 所示ꎮ

图 ７　 帕累托前沿解三维分布图

Ｆｉｇ. ７ ３Ｄ ｄｉｓｔｒｉｂｕｔｉｏｎ ｄｉａｇｒａｍｓ ｏｆ Ｐａｒｅｔｏ
Ｆｒｏｎｔｉｅｒ ｓｏｌｕｔｉｏｎｓ

由图 ７ 可知ꎬ解集在三维目标空间中呈现出分

布均匀的近似曲面形态ꎬ系统年化成本、缺电率与弃

电率 ３ 个目标存在明显的竞争与权衡关系ꎮ 系统年

化成本分布在 ０. １５ 亿元至 １. ５９ 亿元之间ꎬ跨度较

大ꎬ反映出发电单元与氢储能单元不同容量配比方

案对经济性的显著影响ꎮ 结合当地气象与负荷特性

分析ꎬ系统对新能源消纳需求总体高于电网补充供

电需求ꎮ 与氢储能系统相比ꎬ电化学储能的往返效

率通常更高ꎬ因此在满足相同可靠性要求的条件下ꎬ
需配置的电池容量更大ꎬ这也导致其成本变化范围

可能更为宽泛ꎮ
３. ４　 最优方案的选取

针对优化求解得到的最优解集ꎬ采用基于指标

间相关性的指标重要性(ＣＲＩＴＩＣ)客观赋权法计算

各评价指标的权重ꎬ并进一步结合 ＴＯＰＳＩＳ 排序法ꎬ
确定最终推荐的系统容量配置方案ꎮ 基于帕累托前

沿解集的分布特征ꎬ利用 ＣＲＩＴＩＣ 客观赋权法计算

得到风光氢储能系统 ３ 个优化目标的权重分别为年

化成本(０. ３１)、缺电率(０. ３３)和弃电率(０􀆰 ３６)ꎻ风
光电化学储能系统中三者的权重分别为年化成本

(０. ３２)、缺电率(０. ３２)和弃电率(０􀆰 ３６)ꎮ 该权重分

配结果反映出 ３ 个目标之间存在明显的互斥与竞争

关系ꎬ同时也从侧面印证了多目标优化结果在权衡

不同性能时的均衡性与合理性ꎮ
不同储能系统典型解的对比结果如表 ３ 所示ꎮ

由表 ３ 可知ꎬ氢储能方案在经济性、供电可靠性及新

能源消纳能力方面均优于电池储能方案ꎬ更适宜作

为该区域推荐的容量配置方案ꎮ

表 ３　 不同储能方案典型解对比

Ｔａｂ. ３ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｔｙｐｉｃａｌ ｓｏｌｕｔｉｏｎｓ ｆｏｒ ｄｉｆｆｅｒｅｎｔ

ｅｎｅｒｇｙ ｓｔｏｒａｇｅ ｓｃｈｅｍｅｓ

参　 数 氢储能 电池储能

年化成本 / 万元 ４ ７７４ ６ ７８６

缺电率 / ％ ２. ８６ ４. ０１

弃电率 / ％ １. １６ ６. １４

３. ５　 不同储能方案分析

３. ５. １　 年供能分析

在最优配置方案下ꎬ风光氢储能系统的年输出

特性如图 ８ 所示ꎮ
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图 ８　 风光氢储能系统功率平衡图

Ｆｉｇ. ８ Ｐｏｗｅｒ ｂａｌａｎｃｅ ｄｉａｇｒａｍｓ ｏｆ ｗｉｎｄ￣ｓｏｌａｒ￣ｈｙｄｒｏｇｅｎ
ｓｔｏｒａｇｅ ｓｙｓｔｅｍｓ

由图 ８ 可知ꎬ该系统在削峰填谷方面表现出显

著优势ꎮ 运行初期约 ３００ ｈ 内ꎬ因储氢量不足ꎬ系统

出现电力短缺ꎮ 随后ꎬ通过电解槽将盈余电能转化

为氢气储存ꎬ显著提升了新能源的利用率ꎮ 然而ꎬ受
电解槽装机容量限制ꎬ未能完全消纳所有盈余电力ꎬ
导致部分弃电ꎮ 进入秋季后ꎬ气象条件突变引起新

能源出力下降ꎬ电解槽制氢量减少ꎬ同时燃料电池加

速消耗储氢ꎬ最终导致储氢罐氢气耗尽ꎬ系统出现严

重供电缺口ꎮ 随着气象状况逐渐改善ꎬ储氢量得以

恢复ꎬ燃料电池重新投入运行ꎮ 总体而言ꎬ风光氢储

系统可有效增强供电稳定性ꎬ并提高新能源的消纳

能力ꎮ
风光电池储能系统的年输出特性如图 ９ 所示ꎮ

图 ９　 风光电池储能系统功率平衡图

Ｆｉｇ. ９ Ｐｏｗｅｒ ｂａｌａｎｃｅ ｄｉａｇｒａｍｓ ｏｆ ｗｉｎｄ￣ｓｏｌａｒ￣ｃｅｌｌ
ｓｔｏｒａｇｅ ｓｙｓｔｅｍ

　 　 由图 ９ 可知ꎬ在相同气象条件下ꎬ其供能分布规

律与氢储能系统总体相似ꎬ但在系统运行约 ６００ ｈ
后ꎬ电池储能单元已达到其额定容量的上限ꎬ导致后

续时段内出现大量弃电ꎮ 此后ꎬ系统对新能源的消

纳能力主要受限于电池的可用放电容量ꎮ 与氢储能
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系统相比ꎬ电池储能系统的弃电率显著更高ꎬ这主要

源于其有限的存储容量更易饱和ꎬ从而制约了系统

对波动性盈余电力的吸收能力ꎮ
３. ５. ２　 典型日供能分析

选取年负荷最大日与年负荷最小日用于评估系

统的可靠性ꎬ图 １０ 和图 １１ 分别给出了基于 ＣＲＩＴＩＣ￣
ＴＯＰＳＩＳ 方法确定的配置方案在年负荷最大日与年

负荷最小日的功率分布特性ꎮ

图 １０　 负荷最大日系统能量分布情况

Ｆｉｇ. １０ Ｓｙｓｔｅｍ ｅｎｅｒｇｙ ｄｉｓｔｒｉｂｕｔｉｏｎｓ ｏｎ ｔｈｅ ｄａｙ
ｏｆ ｍａｘｉｍｕｍ ｌｏａｄ

由图 １０ 和图 １１ 可知ꎬ秋季源荷偏差最为显著ꎬ
尤其在年最大负荷日ꎬ储氢罐与电池储能持续下降ꎬ
最终均趋于耗尽ꎬ在 ０:００ ~ ２:００ 与 ２２:００ ~ ２４:００
时段内ꎬ两种储能系统均出现供电短缺ꎮ 而在新能

源出力高于负荷需求的时段(如 ２:００ ~ １６:００)ꎬ氢
储能与电池储能系统均可有效消纳盈余电力ꎮ 当风

光出力无法满足负荷需求时ꎬ电池储能系统通过放

电满足负荷需求ꎬ而氢储能系统则通过燃料电池消

耗储氢罐中的氢气发电ꎬ以维持供电平衡ꎮ 在最低

负荷日 ００:００ ~ １５:３０ 时段ꎬ新能源出力显著高于负

荷需求ꎬ风光氢储系统中电解槽在消纳盈余新能源

方面发挥了关键作用ꎬ有效实现了“削峰”ꎮ 然而ꎬ
受电解槽装机容量限制ꎬ系统仍存在部分弃电现象ꎮ
相比之下ꎬ因电池储能已达到上限ꎬ风光电池储能系

统无法进一步消纳多余电力ꎬ出现了较大范围的弃

电ꎮ 在 １７:４５ ~ ２４:００ 时段ꎬ气象条件剧烈变化导致

新能源出力急剧下降ꎮ 此时ꎬ氢储能系统中的燃料

电池通过消耗储氢罐中的氢气发电ꎬ有效弥补了电

力缺口ꎻ电池储能系统则通过放电来补充供电ꎬ两种

储能方式均显著发挥了“填谷”作用ꎬ保障了用户的

电力供应稳定ꎮ

图 １１　 负荷最小日系统能量分布情况

Ｆｉｇ. １１ Ｓｙｓｔｅｍ ｅｎｅｒｇｙ ｄｉｓｔｒｉｂｕｔｉｏｎｓ ｏｎ ｔｈｅ ｄａｙ

ｏｆ ｍｉｎｉｍｕｍ ｌｏａｄ

总体而言ꎬ氢储能与电池储能系统均有助于提

升供电稳定性ꎬ并促进新能源的消纳ꎮ 在本研究案

例下ꎬ氢储能系统虽因“电 － 氢 － 电”转换过程的能

量损耗导致往返效率较低ꎬ但其储氢罐容量相对较

小ꎻ而电池储能系统虽充放电效率较高ꎬ为降低弃电

率需配置更大容量的电池ꎮ 然而ꎬ电池扩容的初始

投资成本较高ꎬ在经济性约束下ꎬ电池储能系统的缺

电率与弃电率高于氢储能系统ꎮ

􀅰２２２􀅰
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４　 结论与讨论

(１) 基于电池储能和氢储能的风光储系统均可

实现新能源的有效消纳ꎮ 优化结果显示ꎬ系统年化

成本、缺电率和弃电率之间存在显著的权衡关系ꎬ在
多目标的相互制约下ꎬ系统难以完全消纳新能源的

过剩出力ꎬ弃电现象无法彻底避免ꎬ但引入储能设备

后新能源系统的缺电率与弃电率均得到显著降低ꎮ
(２) 通过 ＣＲＩＴＩＣ 客观赋权法与 ＴＯＰＳＩＳ 理想解

排序筛选得出采用两种储能方式下系统的典型容量

配置方案ꎬ对于氢储能系统ꎬ风机、光伏、电解槽、燃
料电池和储氢罐的装机容量分别为 ６ １７２ꎬ４ ７０８ꎬ
５ １１５ 和 ６ ７０５ ｋＷ 以及 ８８７ １９３ Ｎｍ３ꎬ系统年化成本

为 ４ ７７４ 万元ꎬ缺电率为 ２. ８６％ꎬ弃电率为 １. １６％ꎮ
与电池储能系统相比ꎬ氢储能在经济性、供电稳定性

和新能源消纳能力方面有较大优势ꎮ
(３) 氢储能系统与电池储能系统均显著提升了

新能源发电系统的供电可靠性与能源利用率ꎮ 电池

储能因具有较高的往返效率ꎬ适用于短时、频繁充放

电场景ꎬ而氢储能凭借其良好的长时储能特性ꎬ在大

规模、长周期新能源系统中展现出明显优势ꎮ
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ｓｙｓｔｅｍｓ[Ｊ] . Ｊｏｕｒｎａｌ ｏｆ Ｐｏｗｅｒ Ｓｏｕｒｃｅｓꎬ２０２３ꎬ５８０:２３３３４３.

[１６] 　 高　 源ꎬ刘学智. 基于氢储能的可再生能源系统协同规划方

法[Ｊ] . 电力需求侧管理ꎬ２０２３ꎬ２５(１):５９ － ６６.

ＧＡＯ ＹｕａｎꎬＬＩＵ Ｘｕｅｚｈｉ. Ｃｏｌｌａｂｏｒａｔｉｖｅ ｐｌａｎｎｉｎｇ ｍｅｔｈｏｄ ｏｆ ｒｅｎｅｗ￣

ａｂｌｅ ｅｎｅｒｇｙ ｓｙｓｔｅｍ ｂａｓｅｄ ｏｎ ｈｙｄｒｏｇｅｎ ｓｔｏｒａｇｅ[Ｊ] . Ｐｏｗｅｒ Ｄｅｍａｎｄ

Ｓｉｄｅ Ｍａｎａｇｅｍｅｎｔꎬ２０２３ꎬ２５(１):５９ － ６６.

[１７] 　 ＬＡＴＡ￣ＧＡＲＣÍＡ ＪꎬＪＵＲＡＤＯ ＦꎬＦＥＲＮÁＮＤＥＺ￣ＲＡＭÍＲＥＺ Ｌ Ｍꎬｅｔ
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ａｌ. Ｏｐｔｉｍａｌ ｈｙｄｒｏｋｉｎｅｔｉｃ ｔｕｒｂｉｎｅ ｌｏｃａｔｉｏｎ ａｎｄ ｔｅｃｈｎｏ￣ｅｃｏｎｏｍｉｃ ａ￣

ｎａｌｙｓｉｓ ｏｆ ａ ｈｙｂｒｉｄ ｓｙｓｔｅｍ ｂａｓｅｄ ｏｎ ｐｈｏｔｏｖｏｌｔａｉｃ / ｈｙｄｒｏｋｉｎｅｔｉｃ / ｈｙ￣

ｄｒｏｇｅｎ / ｂａｔｔｅｒｙ[Ｊ] . Ｅｎｅｒｇｙꎬ２０１８ꎬ１５９:６１１ － ６２０.

[１８] 　 ＰＡＴＩＮ ＭꎬＢÉＧＯＴ ＳꎬＧＵＳＴＩＮ Ｆꎬｅｔ ａｌ. Ｅｎｈａｎｃｉｎｇ ｒｅｓｉｄｅｎｔｉａｌ ｓｕｓ￣

ｔａｉｎａｂｉｌｉｔｙ:Ｍｕｌｔｉ￣ｏｂｊｅｃｔｉｖｅ ｏｐｔｉｍｉｚａｔｉｏｎ ｏｆ ｈｙｄｒｏｇｅｎ￣ｂａｓｅｄ ｍｕｌｔｉ￣

ｅｎｅｒｇｙ ｓｙｓｔｅｍ [ Ｊ] . Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ Ｈｙｄｒｏｇｅｎ Ｅｎｅｒｇｙꎬ

２０２４ꎬ６７:８７５ － ８８７.

[１９] 　 ＡＭＲＯＬＬＡＨＩ Ｍ ＨꎬＢＡＴＨＡＥＥ Ｓ Ｍ Ｔ. Ｔｅｃｈｎｏ￣ｅｃｏｎｏｍｉｃ ｏｐｔｉｍｉ￣

ｚａｔｉｏｎ ｏｆ ｈｙｂｒｉｄ ｐｈｏｔｏｖｏｌｔａｉｃ / ｗｉｎｄ ｇｅｎｅｒａｔｉｏｎ ｔｏｇｅｔｈｅｒ ｗｉｔｈ ｅｎｅｒｇｙ

ｓｔｏｒａｇｅ ｓｙｓｔｅｍ ｉｎ ａ ｓｔａｎｄ￣ａｌｏｎｅ ｍｉｃｒｏ￣ｇｒｉｄ ｓｕｂｊｅｃｔｅｄ ｔｏ ｄｅｍａｎｄ

ｒｅｓｐｏｎｓｅ[Ｊ] . Ａｐｐｌｉｅｄ Ｅｎｅｒｇｙꎬ２０１７ꎬ２０２:６６ － ７７.

[２０] 　 ＣＨＥＮ Ｘ. Ｅｘｐｅｒｉｍｅｎｔａｌ ｏｂｓｅｒｖａｔｉｏｎ ｏｆ ｆａｔｉｇｕｅ ｄｅｇｒａｄａｔｉｏｎ ｉｎ ａ

ｃｏｍｐｏｓｉｔｅ ｗｉｎｄ ｔｕｒｂｉｎｅ ｂｌａｄｅ[ Ｊ] . Ｃｏｍｐｏｓｉｔｅ Ｓｔｒｕｃｔｕｒｅｓꎬ２０１９ꎬ

２１２:５４７ － ５５１.

[２１] 　 ＳＵ Ｈ ＭꎬＫＡＭ Ｔ Ｙ. Ｒｅｌｉａｂｉｌｉｔｙ ａｎａｌｙｓｉｓ ｏｆ ｃｏｍｐｏｓｉｔｅ ｗｉｎｄ ｔｕｒｂｉｎｅ

ｂｌａｄｅｓ ｃｏｎｓｉｄｅｒｉｎｇ ｍａｔｅｒｉａｌ ｄｅｇｒａｄａｔｉｏｎ ｏｆ ｂｌａｄｅｓ[ Ｊ] . Ｃｏｍｐｏｓｉｔｅ

Ｓｔｒｕｃｔｕｒｅｓꎬ２０２０ꎬ２３４:１１１６６３.

[２２] 　 ＡＬＴＡＭＩＭＩ ＡꎬＫＥＳＵＭＡ Ｐ Ｐ. Ｌｏｎｇ￣ｔｅｒｍ ｒｅｌｉａｂｉｌｉｔｙ ａｎｄ ｄｅｇｒａｄａ￣

ｔｉｏｎ ａｎａｌｙｓｉｓ ｏｆ ａ ｍｉｃｒｏｇｒｉｄ ｗｉｔｈ ｗｉｎｄ ｆａｒｍｓ ｓｕｂｊｅｃｔｅｄ ｔｏ ｃｌｉｍａｔｅ

ｃｈａｎｇｅ ｃｏｎｄｉｔｉｏｎｓ ａｎｄ ａｇｅ[ Ｊ] . Ａｒａｂｉａｎ Ｊｏｕｒｎａｌ ｆｏｒ Ｓｃｉｅｎｃｅ ａｎｄ

Ｅｎｇｉｎｅｅｒｉｎｇꎬ２０２３ꎬ４８(５):６５７７ － ６５９３.

[２３] 　 ＬＩ ＪꎬＺＨＡＮＧ ＸꎬＺＨＯＵ Ｘꎬｅｔ ａｌ. Ｒｅｌｉａｂｉｌｉｔｙ ａｓｓｅｓｓｍｅｎｔ ｏｆ ｗｉｎｄ

ｔｕｒｂｉｎｅ ｂｅａｒｉｎｇ ｂａｓｅｄ ｏｎ ｔｈｅ ｄｅｇｒａｄａｔｉｏｎ￣ｈｉｄｄｅｎ￣Ｍａｒｋｏｖ ｍｏｄｅｌ

[Ｊ] . Ｒｅｎｅｗａｂｌｅ Ｅｎｅｒｇｙꎬ２０１９ꎬ１３２:１０７６ － １０８７.

[２４] 　 ＰＡＮ ＹꎬＨＯＮＧ ＲꎬＣＨＥＮ Ｊꎬｅｔ ａｌ. Ｐｅｒｆｏｒｍａｎｃｅ ｄｅｇｒａｄａｔｉｏｎ ａｓｓｅｓｓ￣

ｍｅｎｔ ｏｆ ａ ｗｉｎｄ ｔｕｒｂｉｎｅ ｇｅａｒｂｏｘ ｂａｓｅｄ ｏｎ ｍｕｌｔｉ￣ｓｅｎｓｏｒ ｄａｔａ ｆｕｓｉｏｎ

[Ｊ] . Ｍｅｃｈａｎｉｓｍ ａｎｄ Ｍａｃｈｉｎｅ Ｔｈｅｏｒｙꎬ２０１９ꎬ１３７:５０９ － ５２６.

[２５] 　 ＮＩＲＢＨＥＲＡＭ Ｊ ＳꎬＭＡＨＥＳＨ ＡꎬＢＨＩＭＡＲＡＪＵ Ａ. Ｔｅｃｈｎｏ￣ｅｃｏ￣

ｎｏｍｉｃ ｏｐｔｉｍｉｚａｔｉｏｎ ｏｆ ｓｔａｎｄａｌｏｎｅ ｐｈｏｔｏｖｏｌｔａｉｃ￣ｗｉｎｄ ｔｕｒｂｉｎｅ￣ｂａｔ￣

ｔｅｒｙ ｅｎｅｒｇｙ ｓｔｏｒａｇｅ ｓｙｓｔｅｍ ｈｙｂｒｉｄ ｅｎｅｒｇｙ ｓｙｓｔｅｍ ｃｏｎｓｉｄｅｒｉｎｇ ｔｈｅ

ｄｅｇｒａｄａｔｉｏｎ ｏｆ ｔｈｅ ｃｏｍｐｏｎｅｎｔｓ [ Ｊ] . Ｒｅｎｅｗａｂｌｅ Ｅｎｅｒｇｙꎬ ２０２４ꎬ

２２２:１１９９１８.

[２６] 　 ＳＴＡＦＦＥＬＬ ＩꎬＧＲＥＥＮ Ｒ. Ｈｏｗ ｄｏｅｓ ｗｉｎｄ ｆａｒｍ ｐｅｒｆｏｒｍａｎｃｅ ｄｅ￣

ｃｌｉｎｅ ｗｉｔｈ ａｇｅ? [Ｊ] . Ｒｅｎｅｗａｂｌｅ Ｅｎｅｒｇｙꎬ２０１４ꎬ６６:７７５ － ７８６.

[２７] 　 ＴＩＴＯ Ｓ ＲꎬＬＩＥ Ｔ ＴꎬＡＮＤＥＲＳＯＮ Ｔ Ｎ. Ｏｐｔｉｍａｌ ｓｉｚｉｎｇ ｏｆ ａ ｗｉｎｄ￣

ｐｈｏｔｏｖｏｌｔａｉｃ￣ｂａｔｔｅｒｙ ｈｙｂｒｉｄ ｒｅｎｅｗａｂｌｅ ｅｎｅｒｇｙ ｓｙｓｔｅｍ ｃｏｎｓｉｄｅｒｉｎｇ

ｓｏｃｉｏ￣ｄｅｍｏｇｒａｐｈｉｃ ｆａｃｔｏｒｓ[Ｊ]. Ｓｏｌａｒ Ｅｎｅｒｇｙꎬ２０１６ꎬ１３６:５２５ －５３２.

[２８] 　 ＬＡＮ ＨꎬＷＥＮ ＳꎬＨＯＮＧ Ｙ Ｙꎬｅｔ ａｌ. Ｏｐｔｉｍａｌ ｓｉｚｉｎｇ ｏｆ ｈｙｂｒｉｄ ＰＶ /

ｄｉｅｓｅｌ / ｂａｔｔｅｒｙ ｉｎ ｓｈｉｐ ｐｏｗｅｒ ｓｙｓｔｅｍ[ Ｊ] . Ａｐｐｌｉｅｄ Ｅｎｅｒｇｙꎬ２０１５ꎬ

１５８:２６ － ３４.

[２９] 　 ＣＡＲＲ Ａ ＪꎬＰＲＹＯＲ Ｔ Ｌ. Ａ ｃｏｍｐａｒｉｓｏｎ ｏｆ ｔｈｅ ｐｅｒｆｏｒｍａｎｃｅ ｏｆ ｄｉｆ￣

ｆｅｒｅｎｔ ＰＶ ｍｏｄｕｌｅ ｔｙｐｅｓ ｉｎ ｔｅｍｐｅｒａｔｅ ｃｌｉｍａｔｅｓ[ Ｊ] . Ｓｏｌａｒ Ｅｎｅｒｇｙꎬ

２００４ꎬ７６(１ / ３):２８５ － ２９４.

[３０] 　 ＦＯＵＤＡ￣ＯＮＡＮＡ ＦꎬＣＨＡＮＤＥＳＲＩＳ ＭꎬＭÉＤＥＡＵ Ｖꎬｅｔ ａｌ. Ｉｎｖｅｓ￣

ｔｉｇａｔｉｏｎ ｏｎ ｔｈｅ ｄｅｇｒａｄａｔｉｏｎ ｏｆ ＭＥＡｓ ｆｏｒ ＰＥＭ ｗａｔｅｒ ｅｌｅｃｔｒｏｌｙｓｅｒｓ

ｐａｒｔ Ｉ: Ｅｆｆｅｃｔｓ ｏｆ ｔｅｓｔｉｎｇ ｃｏｎｄｉｔｉｏｎｓ ｏｎ ＭＥＡ ｐｅｒｆｏｒｍａｎｃｅｓ ａｎｄ

ｍｅｍｂｒａｎｅ ｐｒｏｐｅｒｔｉｅｓ[Ｊ] . Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ Ｈｙｄｒｏｇｅｎ Ｅｎｅｒ￣

ｇｙꎬ２０１６ꎬ４１(３８):１６６２７ － １６６３６.

[３１] 　 ＣＨＡＮＤＥＳＲＩＳ ＭꎬＭÉＤＥＡＵ ＶꎬＧＵＩＬＬＥＴ Ｎꎬｅｔ ａｌ. Ｍｅｍｂｒａｎｅ

ｄｅｇｒａｄａｔｉｏｎ ｉｎ ＰＥＭ ｗａｔｅｒ ｅｌｅｃｔｒｏｌｙｚｅｒ:Ｎｕｍｅｒｉｃａｌ ｍｏｄｅｌｉｎｇ ａｎｄ

ｅｘｐｅｒｉｍｅｎｔａｌ ｅｖｉｄｅｎｃｅ ｏｆ ｔｈｅ ｉｎｆｌｕｅｎｃｅ ｏｆ ｔｅｍｐｅｒａｔｕｒｅ ａｎｄ ｃｕｒ￣

ｒｅｎｔ ｄｅｎｓｉｔｙ [ Ｊ ] . Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ Ｈｙｄｒｏｇｅｎ Ｅｎｅｒｇｙꎬ

２０１５ꎬ４０(３):１３５３ － １３６６.

[３２] 　 ＩＴＯ ＨꎬＭＡＥＤＡ ＴꎬＮＡＫＡＮＯ Ａꎬｅｔ ａｌ. Ｐｒｏｐｅｒｔｉｅｓ ｏｆ Ｎａｆｉｏｎ ｍｅｍ￣

ｂｒａｎｅｓ ｕｎｄｅｒ ＰＥＭ ｗａｔｅｒ ｅｌｅｃｔｒｏｌｙｓｉｓ ｃｏｎｄｉｔｉｏｎｓ[ Ｊ] . Ｉｎｔｅｒｎａｔｉｏｎａｌ

Ｊｏｕｒｎａｌ ｏｆ Ｈｙｄｒｏｇｅｎ Ｅｎｅｒｇｙꎬ２０１１ꎬ３６(１７):１０５２７ － １０５４０.

[３３] 　 ＳＨＡＨＶＥＲＤＩＡＮ Ｍ ＨꎬＳＯＨＡＮＩ ＡꎬＳＡＹＹＡＡＤＩ Ｈ. Ａ ３Ｅ ｗａｔｅｒ

ｅｎｅｒｇｙ ｎｅｘｕｓ ｂａｓｅｄ ｏｐｔｉｍｕｍ ｄｅｓｉｇｎ ｆｏｒ ａ ｈｙｂｒｉｄ ＰＶ￣ＰＥＭＦＣ ｅ￣

ｌｅｃｔｒｉｃｉｔｙ ｐｒｏｄｕｃｔｉｏｎ ｓｙｓｔｅｍｓ ｆｏｒ ｏｆｆ￣ｇｉｒｄ ａｐｐｌｉｃａｔｉｏｎｓ[ Ｊ] . Ｅｎｅｒｇｙ

Ｃｏｎｖｅｒｓｉｏｎ ａｎｄ Ｍａｎａｇｅｍｅｎｔꎬ２０２２ꎬ２６７:１１５９１１.

[３４] 　 ＭＡＮＮ Ｒ ＦꎬＡＭＰＨＬＥＴＴ Ｊ ＣꎬＨＯＯＰＥＲ Ｍ Ａ Ｉꎬｅｔ ａｌ. Ｄｅｖｅｌｏｐ￣

ｍｅｎｔ ａｎｄ ａｐｐｌｉｃａｔｉｏｎ ｏｆ ａ ｇｅｎｅｒａｌｉｓｅｄ ｓｔｅａｄｙ￣ｓｔａｔｅ ｅｌｅｃｔｒｏｃｈｅｍｉｃａｌ

ｍｏｄｅｌ ｆｏｒ ａ ＰＥＭ ｆｕｅｌ ｃｅｌｌ[ Ｊ] . Ｊｏｕｒｎａｌ ｏｆ Ｐｏｗｅｒ Ｓｏｕｒｃｅｓꎬ２０００ꎬ

８６(１):１７３ － １８０.

[３５] 　 ＨＡＮ ＢꎬＳＴＥＥＮ Ｓ ＭꎬＭＯ Ｊꎬｅｔ ａｌ. Ｅｌｅｃｔｒｏｃｈｅｍｉｃａｌ ｐｅｒｆｏｒｍａｎｃｅ

ｍｏｄｅｌｉｎｇ ｏｆ ａ ｐｒｏｔｏｎ ｅｘｃｈａｎｇｅ ｍｅｍｂｒａｎｅ ｅｌｅｃｔｒｏｌｙｚｅｒ ｃｅｌｌ ｆｏｒ ｈｙ￣

ｄｒｏｇｅｎ ｅｎｅｒｇｙ [ Ｊ] . Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ Ｈｙｄｒｏｇｅｎ Ｅｎｅｒｇｙꎬ

２０１５ꎬ４０(２２):７００６ － ７０１６.

[３６] 　 ＷＥＩ ＸꎬＷＡＮＧ Ｒ ＺꎬＺＨＡＯ Ｗꎬｅｔ ａｌ. Ｒｅｃｅｎｔ ｒｅｓｅａｒｃｈ ｐｒｏｇｒｅｓｓ ｉｎ

ＰＥＭ ｆｕｅｌ ｃｅｌｌ ｅｌｅｃｔｒｏｃａｔａｌｙｓｔ ｄｅｇｒａｄａｔｉｏｎ ａｎｄ ｍｉｔｉｇａｔｉｏｎ ｓｔｒａｔｅｇｉｅｓ

[Ｊ] . ＥｎｅｒｇｙＣｈｅｍꎬ２０２１ꎬ３(５):１０００６１.

[３７] 　 ＷＡＬＬＮÖＦＥＲ￣ＯＧＲＩＳ ＥꎬＰＯＩＭＥＲ ＦꎬＫÖＬＬ Ｒꎬｅｔ ａｌ. Ｍａｉｎ ｄｅｇｒａ￣

ｄａｔｉｏｎ ｍｅｃｈａｎｉｓｍｓ ｏｆ ｐｏｌｙｍｅｒ ｅｌｅｃｔｒｏｌｙｔｅ ｍｅｍｂｒａｎｅ ｆｕｅｌ ｃｅｌｌ

ｓｔａｃｋｓ￣Ｍｅｃｈａｎｉｓｍｓꎬｉｎｆｌｕｅｎｃｉｎｇ ｆａｃｔｏｒｓꎬｃｏｎｓｅｑｕｅｎｃｅｓꎬａｎｄ ｍｉｔｉｇａ￣

ｔｉｏｎ ｓｔｒａｔｅｇｉｅｓ [ Ｊ] . Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ Ｈｙｄｒｏｇｅｎ Ｅｎｅｒｇｙꎬ

２０２４ꎬ５０:１１５９ － １１８２.

[３８] 　 ＦＯＷＬＥＲ Ｍ ＷꎬＭＡＮＮ Ｒ ＦꎬＡＭＰＨＬＥＴＴ Ｊ Ｃꎬｅｔ ａｌ. Ｉｎｃｏｒｐｏｒａｔｉｏｎ

ｏｆ ｖｏｌｔａｇｅ ｄｅｇｒａｄａｔｉｏｎ ｉｎｔｏ ａ ｇｅｎｅｒａｌｉｓｅｄ ｓｔｅａｄｙ ｓｔａｔｅ ｅｌｅｃｔｒｏｃｈｅｍ￣

ｉｃａｌ ｍｏｄｅｌ ｆｏｒ ａ ＰＥＭ ｆｕｅｌ ｃｅｌｌ [ Ｊ] . Ｊｏｕｒｎａｌ ｏｆ Ｐｏｗｅｒ Ｓｏｕｒｃｅｓꎬ

２００２ꎬ１０６(１ / ２):２７４ － ２８３.

[３９] 　 ＡＧＡＲＷＡＬ ＮꎬＫＵＭＡＲ ＡꎬＶａｒｕｎ. Ｏｐｔｉｍｉｚａｔｉｏｎ ｏｆ ｇｒｉｄ ｉｎｄｅｐｅｎｄ￣

ｅｎｔ ｈｙｂｒｉｄ ＰＶ￣ｄｉｅｓｅｌ￣ｂａｔｔｅｒｙ ｓｙｓｔｅｍ ｆｏｒ ｐｏｗｅｒ ｇｅｎｅｒａｔｉｏｎ ｉｎ ｒｅ￣

ｍｏｔｅ ｖｉｌｌａｇｅｓ ｏｆ Ｕｔｔａｒ ＰｒａｄｅｓｈꎬＩｎｄｉａ[ Ｊ] . Ｅｎｅｒｇｙ ｆｏｒ Ｓｕｓｔａｉｎａｂｌｅ

Ｄｅｖｅｌｏｐｍｅｎｔꎬ２０１３ꎬ１７(３):２１０ － ２１９.

[４０] 　 ＺＨＡＮＧ ＹꎬＳＵＮ ＨꎬＴＡＮ Ｊꎬｅｔ ａｌ. Ｃａｐａｃｉｔｙ ｃｏｎｆｉｇｕｒａｔｉｏｎ ｏｐｔｉｍｉｚａ￣

ｔｉｏｎ ｏｆ ｍｕｌｔｉ￣ｅｎｅｒｇｙ ｓｙｓｔｅｍ ｉｎｔｅｇｒａｔｉｎｇ ｗｉｎｄ ｔｕｒｂｉｎｅ / ｐｈｏｔｏｖｏｌｔａｉｃ /

ｈｙｄｒｏｇｅｎ / ｂａｔｔｅｒｙ[Ｊ] . Ｅｎｅｒｇｙꎬ２０２２ꎬ２５２:１２４０４６.

[４１] 　 ＣＡＲＭＯ ＭꎬＦＲＩＴＺ Ｄ ＬꎬＭＥＲＧＥＬ Ｊꎬｅｔ ａｌ. Ａ ｃｏｍｐｒｅｈｅｎｓｉｖｅ ｒｅ￣

ｖｉｅｗ ｏｎ ＰＥＭ ｗａｔｅｒ ｅｌｅｃｔｒｏｌｙｓｉｓ[ Ｊ] . Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ Ｈｙ￣

ｄｒｏｇｅｎ Ｅｎｅｒｇｙꎬ２０１３ꎬ３８(１２):４９０１ － ４９３４.

[４２] 　 ＡＲＩＡＳ￣ＴＨＯＤＥ Ｙ ＭꎬＨＳＵ ＬꎬＡＮＤＥＲＳＯＮ Ｇꎬｅｔ ａｌ. Ｄｅｍｏｎｓｔｒａ￣

ｔｉｏｎ ｏｆ ｔｈｅ ＳｅｐｔｉＳｔｒａｎｄ ｂｅｎｔｈｉｃ ｍｉｃｒｏｂｉａｌ ｆｕｅｌ ｃｅｌｌ ｐｏｗｅｒｉｎｇ ａ ｍａｇ￣

ｎｅｔｏｍｅｔｅｒ ｆｏｒ ｓｈｉｐ ｄｅｔｅｃｔｉｏｎ[Ｊ] . Ｊｏｕｒｎａｌ ｏｆ Ｐｏｗｅｒ Ｓｏｕｒｃｅｓꎬ２０１７ꎬ

３５６:４１９ － ４２９.

[４３] 　 ＦＲＥＮＳＣＨ Ｓ ＨꎬＦＯＵＤＡ￣ＯＮＡＮＡ ＦꎬＳＥＲＲＥ Ｇꎬｅｔ ａｌ. Ｉｎｆｌｕｅｎｃｅ

ｏｆ ｔｈｅ ｏｐｅｒａｔｉｏｎ ｍｏｄｅ ｏｎ ＰＥＭ ｗａｔｅｒ ｅｌｅｃｔｒｏｌｙｓｉｓ ｄｅｇｒａｄａｔｉｏｎ[Ｊ] .

Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ Ｈｙｄｒｏｇｅｎ Ｅｎｅｒｇｙꎬ ２０１９ꎬ ４４ ( ５７ ):

２９８８９ － ２９８９８.

[４４] 　 ＲＥＺＮＩＣＥＫ Ｅ ＰꎬＨＩＮＺＥ Ｊ ＦꎬＮＥＬＬＩＳ Ｇ Ｆꎬｅｔ ａｌ. Ｓｉｍｕｌａｔｉｏｎ ｏｆ

ｔｈｅ ｓｕｐｅｒｃｒｉｔｉｃａｌ ＣＯ２ ｒｅｃｏｍｐｒｅｓｓｉｏｎ Ｂｒａｙｔｏｎ ｐｏｗｅｒ ｃｙｃｌｅ ｗｉｔｈ ａ

ｈｉｇｈ￣ｔｅｍｐｅｒａｔｕｒｅ ｒｅｇｅｎｅｒａｔｏｒ[Ｊ] . Ｅｎｅｒｇｙ Ｃｏｎｖｅｒｓｉｏｎ ａｎｄ Ｍａｎａｇｅ￣

ｍｅｎｔꎬ２０２１ꎬ２２９:１１３６７８. (刘　 颖　 编辑)
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