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Gas Turbine based on LSTM Models
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Abstract; To address the strong nonlinear dynamics, multivariable coupling and wide-ranging operating
conditions of the T60 heavy-duty gas turbine, a nonlinear generalized predictive controller (NGPC) de-
sign method based on long short-term memory (LSTM) networks was proposed. A multi-input and multi-
output LSTM dynamic model of the gas turbine was constructed. The time window was determined using
the mutual information method, outliers were removed via the interquartile range, and data underwent
normalization treatment. A NGPC for the heavy-duty gas turbine was further designed. The LSTM model
was used to predict the free response online, while the forced response was approximated numerically to
construct the dynamic matrix. A real-time gradient optimization strategy based on local linearization was

proposed, transforming the nonconvex optimization problem into a real-time solvable quadratic program-
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ming subproblem. The projection gradient descent method was employed to solve the control rate in real

time. Simulation experiments were conducted on the MATLAB platform, employing wide-range step load

disturbances as input with a 100-millisecond control cycle. Simulation results demonstrate that compared

to the Min-Max controller used in T60 gas turbines, during load transients, the NGPC controller signifi-

cantly reduces speed overshoot by adjusting fuel flow. It also improves response curve smoothness by

42% , substantially lowers control error, achieves zero violation rate for speed and temperature con-

straints, and completes single-step calculations in 7 to 9 millisecond within 9% of the control cycle. This

meets the real-time control requirements for heavy-duty gas turbines.

Key words: generalized predictive control (GPC) ; heavy-duty gas turbine; LSTM; nonlinear model
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Fig. 1 Schematic diagram of T60 gas turbine
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Tab. 1 T60 gas turbine performance parameters

Z BOH
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JEHE 12
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Fig. 2 Flowchart of LSTM modeling methodology
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