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基于 ＬＳＴＭ 模型的重型燃气轮机非线性广义
预测控制器设计

雷　 扬ꎬ杨　 卓ꎬ左　 信ꎬ岳元龙
(中国石油大学(北京) 人工智能学院ꎬ北京 １０２２００)

摘　 要:针对 Ｔ６０ 重型燃气轮机存在的动态特性强非线性、多变量耦合及工况大范围变化等特点ꎬ提出一种基于长

短期记忆网络(ＬＳＴＭ)的非线性广义预测控制器设计方法ꎮ 构建了燃气轮机多输入多输出 ＬＳＴＭ 动态模型ꎬ通过

互信息法确定时间窗口ꎬ采用四分位距剔除异常值ꎬ并对数据进行标准化处理ꎮ 进一步设计重型燃气轮机的非线

性广义预测控制器(ＮＧＰＣ)ꎬ利用 ＬＳＴＭ 模型在线预测自由响应并采用数值逼近强制响应以构建动态矩阵ꎬ提出基

于局部线性化的实时梯度优化策略ꎬ将非凸优化问题转化为可实时求解的二次规划子问题ꎬ并利用投影梯度下降

法实时求解控制率ꎮ 在 ＭＡＴＬＡＢ 平台开展仿真实验ꎬ选取大范围阶跃负荷为扰动输入、控制周期 １００ ｍｓꎮ 仿真结

果表明:在负荷突变时ꎬ相比 Ｔ６０ 燃气轮机用的 Ｍｉｎ￣Ｍａｘ 控制器ꎬＮＧＰＣ 控制器通过调节燃料量使转速波动超调量

显著降低ꎬ且响应曲线平滑度提高 ４２％ ꎻ控制误差显著降低ꎬ转速与温度约束违规率为零ꎬ单步计算耗时 ７ ~ ９ ｍｓꎬ
占控制周期的 ９％以内ꎬ满足重型燃气轮机实时控制要求ꎮ
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引　 言

燃气轮机作为航空推进与工业发电领域的核心

动力装置ꎬ其动态特性呈现强非线性、多变量耦合及

工况敏感等特点[１]ꎮ 精确建模与控制是实现其高

效、安全运行的关键ꎮ Ｔ６０ 重型燃气轮机广泛应用

于工业发电ꎬ具有高可靠性和灵活性ꎬ但其强非线性

动态特性给控制系统设计带来挑战[２ － ３]ꎮ

燃气轮机建模方法主要包括机理建模和数据驱

动建模ꎮ 机理建模基于物理守恒方程ꎬ但难以精确

描述燃烧不稳定性和间隙泄漏等非线性效应ꎬ仿真

误差通常超过 ５％ [４ － ６]ꎮ 数据驱动建模方法ꎬ如神

经网络ꎬ能够从数据中学习复杂非线性关系提高模

型精度ꎮ 王志涛等人[７] 借助于虚实映射技术ꎬ提出

了基于多维度、多领域建模的数字孪生框架ꎬ为燃气

轮机系统数字化应用发展提供了一定借鉴作用ꎮ 叶

旖茵等人[８]结合神经网络基本框架ꎬ提出了基于机

理修正的小型燃气轮机变工况神经网络模型ꎬ结合

了物理模型和数据驱动的优势ꎮ 然而ꎬ数据 － 机理

融合模型仍需依赖部分机理知识ꎬ且在工况大范围

变化时泛化能力有限ꎮ

在控制策略方面ꎬ传统 Ｍｉｎ￣Ｍａｘ 控制架构广

泛应用于燃气轮机ꎬ沈新军等人[９] 构建了基于燃气

轮机燃料量的通用控制方法ꎬ但其多回路切换策

略可能导致控制动作不连续ꎬ进而引发转速振荡ꎮ

广义预测控制(Ｇｅｎｅｒａｌｉｚｅｄ Ｐｒｅｄｉｃｔｉｖｅ ＣｏｎｔｒｏｌꎬＧＰＣ)

是一种先进控制策略ꎬ适用于非线性系统[１０]ꎮ 但传

统 ＧＰＣ 基于线性模型ꎬ如受控自回归积分移动平

均模型(ＣＡＲＩＭＡ) ꎬ难以处理燃气轮机的强非线

性ꎮ Ｓｉｎｇｈ 等人[１１]提出了一种基于非线性动态反演

技术的鲁棒非线性燃油流量控制器ꎬ但未考虑物理

约束ꎬ如燃料流量的限制ꎮ

长短期记忆网络(ＬＳＴＭ)作为一种递归神经网

络ꎬ能够有效捕捉时间序列的长期依赖关系ꎬ适用于

动态系统建模[１２]ꎮ 与数据 － 机理融合模型相比ꎬ

ＬＳＴＭ 采用纯数据驱动ꎬ无需复杂物理知识ꎬ且能自

适应学习非线性动态ꎬ在预测精度和计算效率上具

有优势ꎮ

本研究提出将 ＬＳＴＭ 模型集成到 ＧＰＣ 框架中ꎬ

构建非线性广义预测控制器(Ｎｏｎｌｉｎｅａｒ Ｇｅｎｅｒａｌｉｚｅｄ

Ｐｒｅｄｉｃｔｉｖｅ ＣｏｎｔｒｏｌｌｅｒꎬＮＧＰＣ)ꎮ 该控制器兼具 ＬＳＴＭ

模型强大的非线性动态捕捉能力与 ＧＰＣ 框架的多

步预测、滚动优化优点ꎮ 与传统的线性 ＧＰＣ 相比ꎬ

该控制器能够更准确地预测燃气轮机在复杂瞬态过

程中的行为ꎬ从而生成更优化的控制序列ꎻ与 Ｍｉｎ￣

Ｍａｘ 等传统控制架构相比ꎬ其基于滚动优化的单一

控制律输出避免了模式切换带来的不连续性ꎬ有利

于系统稳定ꎻ同时ꎬ通过在优化问题中显式处理执行

器物理约束ꎬ相较于某些非线性控制方法(如动态

反演)ꎬ具备了更强的工程实用性ꎮ 并通过仿真验

证该控制策略在提升 Ｔ６０ 燃气轮机动态控制性能与

运行安全性方面的潜力ꎮ

１　 Ｔ６０ 燃气轮机的 ＬＳＴＭ 模型设计

１. １　 Ｔ６０ 燃气轮机参数设定

图 １ 为 Ｔ６０ 工业用单轴燃气轮机的原理图ꎬ表

１ 是其基本参数ꎮ
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图 １　 Ｔ６０ 原理图

Ｆｉｇ. １ Ｓｃｈｅｍａｔｉｃ ｄｉａｇｒａｍ ｏｆ Ｔ６０ ｇａｓ ｔｕｒｂｉｎｅ

　 　 图 １ 展示了索拉 Ｔ６０ 单轴重型燃气轮机的工作

原理ꎮ 由图 １ 可知ꎬ空气经由进气道被轴流式压气

机吸入并压缩ꎬ形成高温高压气体ꎮ 压缩后的气体

进入燃烧室ꎬ与喷入的天然气燃料混合并点燃ꎬ进行

等压燃烧ꎬ产生极高温度的燃气ꎮ 高温高压燃气随

后进入涡轮膨胀做功ꎬ推动涡轮转子高速旋转ꎮ 涡

轮产生的机械功一方面用于驱动前端的压气机持续

运转ꎬ另一方面通过减速齿轮箱将转速降至发电机

所需的工作转速ꎬ最终驱动发电机输出电能ꎮ 做功

后的废气则通过排气道排出ꎮ

表 １　 Ｔ６０ 燃气轮机性能参数

Ｔａｂ. １ Ｔ６０ ｇａｓ ｔｕｒｂｉｎｅ ｐｅｒｆｏｒｍａｎｃｅ ｐａｒａｍｅｔｅｒｓ

参　 数 数　 值

燃气轮机功率 / ＭＷ ５. ６７

效率 / ％ ３１. ５

转速 / ( ｒ􀅰ｍｉｎ － １) １５ ０００

压缩比 １２

排气流量 / (ｋｇ􀅰ｓ － １) ２１. ６

排气温度 / ℃ ５１０

１. ２　 ＬＳＴＭ 建模方法

针对 Ｔ６０ 燃气轮机ꎬ提出了一种使用 ＬＳＴＭ 对

工业发电用燃气轮机进行建模的新方法ꎮ 由于燃气

轮机的动态过程具有时间相关性ꎬＬＳＴＭ 通过其内

部遗忘门、输入门、输出门的门控机制能够捕捉长期

依赖关系[１３]ꎬ适合处理燃气轮机启动、变载等过程

的时序数据ꎮ 建模方法的流程如图 ２ 所示ꎮ
使用现场收集的 １１００ 条数据进行模型训练ꎬ数

据集是由燃料流量 Ｗｆ、进口导叶(ＩＧＶ)开度 θＩＧＶ、环
境温度 Ｔ１、进口压力 ｐ１ ４ 个输入参数和透平排气温

度 Ｔ５、输出功率 Ｐ、转速 Ｎ ３ 个输出参数组成时间

序列数据集ꎮ

图 ２　 ＬＳＴＭ 建模方法流程图

Ｆｉｇ. ２ Ｆｌｏｗｃｈａｒｔ ｏｆ ＬＳＴＭ ｍｏｄｅｌｉｎｇ ｍｅｔｈｏｄｏｌｏｇｙ

１. ２. １　 异常数据处理

针对燃气轮机传感器高斯噪声 ＋脉冲干扰的噪

声特性ꎬ采用四分位距 ＩＱＲ 过滤脉冲异常ꎬＺ 分数

(Ｚ￣ｓｃｏｒｅ)处理高斯分布数据ꎮ
首先根据箱形图法(Ｂｏｘ￣ｐｌｏｔ)使用 ＩＱＲ 滤波剔

除实验数据集中的异常数据ꎬ对每个输入特征和输

出目标数据列计算其 ＩＱＲꎮ 如公式(１)所示:
ＩＱＲ ＝ Ｑ３ － Ｑ１ (１)

式中:ＩＱＲ—四分位距ꎻＱ３—第 ３ 四分位数ꎻＱ１—第

１ 四分位数ꎮ Ｑ１ 确定了 ２５％ 的数据点小于或等于

这个值ꎬＱ３ 确定了 ７５％ 的数据点小于或等于这个

值ꎮ ＩＱＲ 定义为 Ｑ３ 与 Ｑ１ 的差值ꎬ其描述了数据集

的中间 ５０％的扩散度ꎮ 通过 Ｑ１ 和 Ｑ３ 扩展一定倍

数的 ＩＱＲ 确定异常值的范围ꎬ如公式(２)所示ꎮ 将

所有不在这个范围内的值视为异常值并剔除ꎬ确保
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数据集的质量ꎮ
ｙｍｉｎ ＝ Ｑ１ － １. ５ × ＩＱＲ

ｙｍａｘ ＝ Ｑ３ ＋ １. ５ × ＩＱＲ
{ (２)

对于缺失值ꎬ使用时间序列线性插值方法填补ꎮ
根据前后时间点的数据进行插值ꎬ生成合理的填补

值ꎬ之后对处理过的输入和输出数据进行标准化ꎬ使
用 Ｚ￣ｓｃｏｒｅ 标准化方法ꎬ消除量纲影响ꎬ使每列的均

值为 ０ꎬ标准差为 １ꎻ最后ꎬ对数据集进行划分ꎬ前
８０％用于训练ꎬ后 ２０％ 用于测试ꎮ 经频谱分析ꎬ经
数据预处理后主要频段信噪比提升 ４０％ ꎬ模型收敛

速度提高 ２ 倍ꎮ
１. ２. ２　 结构化数据构建

时间序列重构是燃气轮机 ＬＳＴＭ 建模的核心环

节ꎬ目标是将静态数据表转化为具有时间依赖性的

序列样本ꎮ ＬＳＴＭ 网络要求输入为样本数、时间步

长、特征数的三维张量ꎬ而原始数据是时间点 ×特征

的二维表格ꎬ必须重构为滑动窗口形式ꎮ 对于转速、
输出功率等时间序列输出变量ꎬ需确定其与历史输

入序列ꎬ燃料量、ＩＧＶ 开度等在某延迟时间 τ 时仍存

在显著关联ꎮ 对于从 １ 到最大延迟时间 τｍａｘ每一个

可能的延迟时间 τꎬ计算输出变量ｙｔ与输入变量ｕｔ － τ

的互信息 Ｉ(ｙｔꎬｕｔ － τ)ꎬ如公式(３)所示:

Ｉ(ｙｔꎬｕｔ －τ) ＝ ∑
ｙｔ
∑
ｕｔ－τ

ｐ(ｙｔꎬｕｔ －τ)ｌｏｇ
ｐ(ｙｔꎬｕｔ －τ)

ｐ(ｙｔ)ｐ(ｕｔ －τ)
(３)

式中:ｐ(ｙｔꎬｕｔ － τ)—联合分布概率ꎻｐ(ｙｔ)、ｐ(ｕｔ － τ)—
边缘分布概率ꎻｙｔ—输出变量ꎻｕｔ － τ—历史输入序列ꎻ
τ—延迟时间ꎮ

选择互信息值首次下降到最大互信息的 ２０％
的延迟时间 τ 作为时间步长 Ｔꎬ如公式(４)所示:
Ｔ ＝ ｍｉｎ{τ ｜ Ｉ(ｙｔꎬｕｔ －τ) < α􀅰ｍａｘ

τ
Ｉ(ｙｔꎬｕｔ －τ)} (４)

式中:α—阈值系数ꎮ
采用式(３)、式(４)计算输入输出数据的互信

息ꎬ取所有输入中最长的最优延迟时间作为最终 Ｔꎮ
使用 ＭＡＴＬＡＢ 编写计算机代码ꎬ确定了最优时间步

长 Ｔ 的值为 １５ꎮ 模型将依据前 １５ 个时间点的输入

数据预测下一个时间点的输出ꎮ
在 ＭＡＴＬＡＢ 中使用元标数组(ｃｅｌｌ)实现数据的

高效存储与处理ꎬｃｅｌｌ 数组能够完整存储历史状态

序列ꎬ避免传统矩阵拼接导致的时间信息损失ꎬｃｅｌｌ
数组是 ＬＳＴＭ 模型输入的标准数据形式[１４ － １６]ꎮ 将

所有输入样本存储在一个 ｃｅｌｌ 数组中ꎬ每个元素是

一个 Ｔ × ４ 的矩阵ꎮ 同样ꎬ将对应的标签存储在另一

个 ｃｅｌｌ 数组中ꎮ 为了符合 ＭＡＴＬＡＢ 中 ＬＳＴＭ 网络对

输入数据格式的要求(每个序列输入应为特征数 ×
时间步数ꎬ即 ４ × Ｔ)ꎬ将每个输入样本矩阵进行转

置ꎬ使其变为 ４ × Ｔ 的矩阵ꎮ 而输出标签则从 ｃｅｌｌ 数
组转换为一个 ｎ × ３ 的矩阵(ｎ 为样本数量)ꎬ其中每

一行对应一个样本的标签ꎮ 这一重构过程将原始的

一维时间序列数据转化为具有时间步特征的序列样

本ꎬ为 ＬＳＴＭ 网络提供了能够学习时间依赖性的结

构化数据ꎮ
１. ２. ３　 启动过程建模

针对 Ｔ６０ 燃气轮机的启动过程ꎬ本文设计了专

用的多输入多输出 ＬＳＴＭ 动态模型ꎬ启动过程作为

燃气轮机最复杂的瞬态工况ꎬ其动态特性呈现强非

线性、多变量耦合及时间依赖性ꎬ具体表现为:燃料

流量 Ｗｆ与 ＩＧＶ 开度 θＩＧＶ的协同调节主导燃烧室能

量释放ꎬ环境温度 Ｔ１ 和进口压力 ｐ１ 影响压气机效

率ꎬ转速 Ｎ、输出功率 Ｐ、排气温度Ｔ５构成关键输出

参数ꎮ
在初始点火阶段ꎬ通过遗忘门控制历史状态重

置ꎬ避免冷态启动的初始值干扰ꎻ加速阶段通过输入

门强化燃料流量 Ｗｆ与转速 Ｎ 的梯度关联ꎬ暖机至满

载阶段通过输出门耦合 ＩＧＶ 开度 θＩＧＶ与排气温度

Ｔ５ꎬ约束 ｍａｘ(Ｔ５)≤５３０ ℃ꎮ
输入层:
Ｘ ｔ ＝ [ｕｔ －１４ꎬｕｔ －１３ꎬ􀆺ꎬｕｔ ] Ｔ

ｕｔ ＝ [ＷｆꎬθＩＧＶꎬＴ１ꎬｐ１]
{ (５)

ＬＳＴＭ 层第一层设置 １５０ 个单元ꎬ负责捕获燃

烧延迟、转子惯性等短期动态ꎻ第二层设置 １００ 个单

元ꎬ负责提取中期耦合特征(燃料 － 空气比与功率

响应)ꎻ第三层设置 ５０ 个单元ꎬ对长期依赖(热应力

积累、转速爬升)建模ꎮ 添加 Ｄｒｏｐｏｕｔ 层抑制启动数

据中传感器噪声导致的过拟合ꎬ提高模型的泛化能

力ꎬ比率设置为 ０. ２ꎮ 最后设置全连接层将 ＬＳＴＭ 提

取的特征进行非线性组合ꎬ得到最终的预测值ꎬ输出

三维向量 ｙｔ ＝ [ＰꎬＮꎬＴ５]ꎮ
１. ２. ４　 ＬＳＴＭ 模型训练与验证

在 ＭＡＴＬＡＢ 中 使 用 自 适 应 矩 估 计 优 化 器

(Ａｄａｐｔｉｖｅ Ｍｏｍｅｎｔ ＥｓｔｉｍａｔｉｏｎꎬＡｄａｍ)自动调整学习
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率ꎬ以提高训练速度和准确性ꎻ设置小批量数据的大

小ꎬ即每次更新权重时所使用的样本数量为 ６４ꎻ最
大训练轮数设置为 ３００ 轮ꎬ即模型将在数据集上进

行最多 ３００ 次完整的训练周期ꎻ初始学习率设置为

０. ００１ꎬ学习率采用分段调整策略ꎬ每 ５０ 轮训练后ꎬ
学习率将减少为原来的 ５０％ ꎬ以便使网络收敛

更好ꎮ
网络训练完成后ꎬ测试数据集用于测试网络并

评估其泛化性能ꎮ 在训练和测试过程中ꎬ对 Ｔ６０ 燃

气轮机 ＬＳＴＭ 模型的每个输出参数(Ｎ、Ｐ、Ｔ５)的整

组数据进行计算ꎬ得到其对应的均方根误差 ＲＭＳＥ
和平均绝对误差 ＭＡＥꎬ计算方法如式(６)、式(７)
所示:

ＲＭＳＥ ＝ １
ｎ∑

ｎ

ｉ ＝ １
(ｙｉ － ｙ^ｉ ) ２ (６)

ＭＡＥ ＝ １
ｎ∑

ｎ

ｉ ＝ １
｜ ｙｉ － ｙ^ｉ ｜ (７)

式中:ｎ—每个输出参数(Ｎ、Ｐ、Ｔ５)数据集对应的样

本个数ꎻｙｉ—机组运行值ꎻｙ^ｉ—模型预测值ꎮ
表 ２ 为 ＬＳＴＭ 模型预测误差量化结果ꎬ由表 ２

可知ꎬ ＬＳＴＭ 模型对关键参数的预测误差均低于

１􀆰 ５％ ꎬ验证了模型的精确性ꎮ
相对误差由 ＲＭＳＥ 和参数额定值确定ꎬ经计算

输出参数 (Ｎ、Ｐ、 Ｔ５ ) 的相对误差分别为 ０. ３％ ꎬ
１􀆰 ４１％和 ０. ６３％ ꎮ

表 ２　 ＬＳＴＭ 模型预测误差量化结果

Ｔａｂ. ２ Ｑｕａｎｔｉｔａｔｉｖｅ ｒｅｓｕｌｔｓ ｏｆ ＬＳＴＭ ｍｏｄｅｌ

ｐｒｅｄｉｃｔｉｏｎ ｅｒｒｏｒｓ

输出参数 ＲＭＳＥ ＭＡＥ

Ｔ５ / ℃ ３. ２ ２. １

Ｎ / ( ｒ􀅰ｍｉｎ － １) ４５ ３２

Ｐ / ＭＷ ０. ０８ ０. ０５

２　 Ｔ６０ 燃气轮机的非线性广义预测控制器

设计

２. １　 预测控制原理

广义预测控制(Ｇｅｎｅｒａｌｉｚｅｄ Ｐｒｅｄｉｃｔｉｖｅ Ｃｏｎｔｒｏｌꎬ
ＧＰＣ)是一种先进的控制策略ꎬ用于处理动态系统的

预测与优化ꎮ 其由模型预测控制发展而来ꎬ尤其适

合处理存在时变、不确定性或非线性的系统[１７ － １８]ꎮ
ＧＰＣ 的核心在于通过建立一个关于系统的预测模

型ꎬ并在此基础上优化未来的控制动作ꎬ从而实现对

系统输出的精准控制ꎮ ＧＰＣ 使用受控自回归积分

移动平均模型 ( ＣＡＲＩＭＡ) 描述系统ꎬ如公式 (８)
所示:

Ａ(ｑ －１)ｙ( ｔ) ＝ Ｂ(ｑ －１)ｕ( ｔ － １) ＋ Ｃ(ｑ －１)
Δ ξ( ｔ) (８)

式中:ｙ( ｔ)、ｕ( ｔ － １)—系统的输出和输入ꎻξ( ｔ)—系

统的干扰信号ꎻｑ － １—后移时间算子ꎻΔ—差分算子ꎻ

Ａ(ｑ － １)、Ｂ( ｑ － １)、Ｃ( ｑ － １)—后移时间算子ｑ － １ 的多

项式ꎬ阶数分别为ｎａ、ｎｂ、ｎｃꎬ如公式(９)所示:

Ａ(ｑ －１) ＝ １ ＋ ａ１ ｑ －１ ＋ ａ２ ｑ －２ ＋ 􀆺 ＋ ａｎａ ｑ
－ｎａ

Ｂ(ｑ －１) ＝ ｂ０ ＋ ｂ１ ｑ －１ ＋ ｂ２ ｑ －２ ＋ 􀆺 ＋ ｂｎｂ ｑ
－ｎｂ

Ｃ(ｑ －１) ＝ １ ＋ ｃ１ ｑ －１ ＋ ｃ２ ｑ －２ ＋ 􀆺 ＋ ｃｎｃ ｑ
－ｎｃ

ì

î

í

ï
ï

ïï
(９)

ＧＰＣ 策略的优化目标是一个最小化代价函数ꎬ
该函数衡量了控制过程中的两个方面:一方面是控

制动作的执行代价ꎬ另一方面是预测输出与期望输

出之间的偏差[１９]ꎮ 代价函数在预测时域内对系统

输出与目标输出的差距进行评估ꎬ目的是通过调整

控制序列优化系统性能ꎬ使控制代价和输出误差最

小化ꎮ 如公式(１０)所示:

Ｊ ＝ ∑
Ｎ２

ｊ ＝ Ｎ１

[ ｙ^( ｔ ＋ ｊ ｜ ｔ) － ｗ( ｔ ＋ ｊ)] ２ ＋

λ∑
Ｎｕ

ｊ ＝ １
[Δｕ( ｔ ＋ ｊ － １)] ２ (１０)

式中:ｙ^( ｔ ＋ ｊ ｜ ｔ)—系统模型的输出ꎻｗ( ｔ ＋ ｊ)—参考

输出ꎻΔｕ( ｔ ＋ ｊ － １)—需要确定的未来控制动作序

列ꎻＮ１、Ｎ２、Ｎｕ—最小、最大和控制时域ꎻλ—惩罚控

制输入的加权因子ꎮ
ＧＰＣ 整定的参数为 Ｎ１、Ｎ２、Ｎｕ 和 λꎬ决定 ＧＰＣ

控制器的稳定性与性能ꎮ
为了驱动 ＧＰＣ 控制率ꎬ求解预测方程如公式

(１１)所示:
ｙ( ｔ ＋ ｊ ｜ ｔ) ＝ Ｇ ｊ( ｚ －１)Δｕ( ｔ ＋ ｊ － １) ＋ Ｆ ｊ( ｚ －１)ｙ( ｔ)

(１１)

式中:Ｇ ｊ ( ｚ － １ ) Δｕ ( ｔ ＋ ｊ － １)—系统的强制响应ꎻ

Ｆ ｊ( ｚ － １)ｙ( ｔ)—系统的自由响应ꎻｙ( ｔ ＋ ｊ ｜ ｔ)—系统模

型的输出ꎮ
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系统强制响应依赖于尚未计算的未来控制动

作ꎬ其中 Ｇ ｊ( ｚ － １)包含系统的阶跃响应系数ꎮ
控制率求解如公式(１２)所示ꎬ根据 Ｈｅｓｓｉａｎ 矩

阵的定义可求得对于无约束情况下的 Δｕꎮ
Δｕ ＝ (ＧＴＧ ＋ λＩ) －１ＧＴ(ｗ － ｆ) (１２)

式中:Ｇ—包含系统的阶跃响应系数的动态矩阵ꎻ
ｆ—自由响应向量ꎮ

该解析解仅适用于线性模型预测和无约束或简

单约束情况ꎮ 对于非线性 ＬＳＴＭ 预测模型和复杂约

束ꎬ需要采用不同的优化策略ꎮ
２. ２　 控制器结构与优化策略

２. ２. １　 控制需求与变量定义

针对 Ｔ６０ 燃气轮机强非线性、多变量耦合的运

行特性ꎬ控制器需满足以下具体控制目标ꎬ包括快速

跟踪功率指令 Ｐｒｅｆ(主被控量)、维持转速 Ｎ 在安全

范围[ＮｍｉｎꎬＮｍａｘ]、限制排气温度 Ｔ５ < Ｔ５ꎬｍａｘ、协调燃

料量 Ｗｆ与进口导叶开度 θＩＧＶ以抑制耦合震荡ꎮ
对于控制器输入变量ꎬ不考虑进口温度以及进

口大气压力的变化ꎮ
操纵变量:

ｕ( ｔ) ＝
Ｗｆ( ｔ)

θＩＧＶ( ｔ)
é

ë
ê
ê

ù

û
ú
úꎻΔｕ( ｔ) ＝ ｕ( ｔ) － ｕ( ｔ － １) (１３)

式中:Δｕ( ｔ)—控制输入变化量ꎮ
被控变量:

ｙ( ｔ) ＝
Ｐ( ｔ)
Ｎ( ｔ)
Ｔ５( ｔ)

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(１４)

式中:Ｐ( ｔ)—功率输出向量ꎻＮ( ｔ)—转速输出向量ꎻ
Ｔ５( ｔ)—排气温度输出向量ꎮ

参考轨迹:

ｒ( ｔ ＋ ｋ) ＝

Ｐｒｅｆ( ｔ ＋ ｋ)

Ｎｎｏｍ

Ｔ５ꎬｍａｘ

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

ꎬ　 ｋ ＝ １ꎬ􀆺ꎬｎ (１５)

式中:Ｐｒｅｆ( ｔ ＋ ｋ)—输出功率参考轨迹ꎻＮｎｏｍ—额定

转速ꎬ取值 １５ ０００ ｒ / ｍｉｎꎻＴ５ꎬｍａｘ—最大透平排气温

度ꎬ取值 ５３０ ℃ꎮ
根据表 １ 物理约束如下:
输入幅值: Ｗｆ∈[０. ８ꎬ５. ０]ꎬθＩＧＶ∈[２０％ꎬ１００％]
输入变化率: ｜ ΔＷｆ ｜≤０. ３ꎬ ｜ ΔθＩＧＶ ｜≤２
输出约束:Ｎ∈[１４ ８００ꎬ１５ ２００]ꎬＴ５≤５３０

２. ２. ２　 自由响应预测与动态矩阵构建

传统 ＧＰＣ 基于线性模型ꎬ然而燃气轮机本质上

是强非线性的ꎬ因此需要将 ＧＰＣ 框架与非线性预测

模型(如 ＬＳＴＭ)结合ꎮ
由公式(１１)可知ꎬ若预测系统的未来输出ꎬ需

要确定系统的强制响应和自由响应ꎬ其中强制响应

需要确定系统的阶跃响应系数ꎮ 因此ꎬ为了获得强

制响应和自由响应ꎬ迭代使用第 １ 节搭建的 Ｔ６０ 燃

气轮机的 ＬＳＴＭ 模型作为预测器ꎬ整体控制方案如

图 ３ 所示ꎮ

图 ３　 Ｔ６０ 燃气轮机广义预测控制器整体控制方案图

Ｆｉｇ. ３ Ｏｖｅｒａｌｌ ｃｏｎｔｒｏｌ ｓｃｈｅｍｅ ｄｉａｇｒａｍ ｏｆ ＧＰＣ ｏｆ

Ｔ６０ ｇａｓ ｔｕｒｂｉｎｅ

图 ３ 所示的控制方案涵盖待控过程的 ＬＳＴＭ 模

型和 ＧＰＣ 算法模块ꎮ Ｔ６０ 燃气轮机的 ＬＳＴＭ 模型充

当预测器ꎬ负责输出自由响应与强制响应ꎬＧＰＣ 算

法模块则基于此生成输出ꎬ作为设备或预测器的输

入信号ꎮ 双刀双掷开关 Ｓ 在样本间切换至预测器状

态ꎬ此时 ＧＰＣ 算法模块借助预测器算出下一控制输

入ꎮ 当成本函数处于最小化状态时ꎬ最优控制输入

会被输送至被控对象ꎮ
自由响应是在假设未来控制动作保持不变的情

况下系统预测输出ꎻ强制响应则是未来控制动作变

化对输出的影响[２０ － ２１]ꎮ 在预测时ꎬ假设从 ｔ 时刻开

始ꎬ控制量保持不变ꎬ那么自由响应可以通过 ＬＳＴＭ
模型预测得到ꎬ如公式(１６)所示:
ｆ( ｔ ＋ ｋ ｜ ｔ) ＝ ＬＳＴＭ(ｕｔ －Ｔ:ｔ －１ꎬｕｔ －１ꎬ􀆺ꎬｙｔ －Ｔ:ｔ －１) (１６)
式中:ｆ( ｔ ＋ ｋ ｜ ｔ)—系统在无新控制作用下的自由响

应ꎻｕｔ － Ｔ:ｔ － １—历史输入ꎻ ｙｔ － Ｔ:ｔ － １—历史输出ꎻ ｋ—１ꎬ
２ꎬ􀆺ꎬＮ２ꎻＴ—１５(模型根据前 １５ 个时间点的输入数
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据预测下一个时间点的输出)ꎮ
未来的控制输入固定为上一个时刻的控制输入

ｕｔ － １ꎮ 令:

ｆ( ｔ) ＝ [ ｆ( ｔ ＋ １ ｜ ｔ) Ｔꎬ􀆺ꎬｆ( ｔ ＋ Ｎ２ ｜ ｔ ) Ｔ] Ｔ (１７)
公式(１７)表示在假设未来控制增量不变的条

件下ꎬ由 ＬＳＴＭ 预测模型产生的、跨越整个预测时域

的自由响应输出向量ꎮ 其中:
ｆ( ｔ ＋ ｋ ｜ ｔ) ＝ [Ｐ( ｔ ＋ ｋ ｜ ｔ)ꎬＮ( ｔ ＋ ｋ ｜ ｔ)ꎬＴ５( ｔ ＋ ｋ ｜ ｔ)] ＝ Ｔ

(１８)
式中:ｆ( ｔ ＋ ｋ ｜ ｔ)—自由响应输出向量ꎻＰ( ｔ ＋ ｋ ｜ ｔ)—
功率预测输出向量ꎻＮ( ｔ ＋ ｋ ｜ ｔ)—转速预测输出向

量ꎻＴ５( ｔ ＋ ｋ ｜ ｔ)—排气温度预测输出向量ꎮ
强制响应是通过施加单位阶跃信号获得的ꎮ 由

于 ＬＳＴＭ 是非线性的ꎬ不能直接得到阶跃响应系数ꎬ
因此采用数值方法对于每个输入计算两个预测值ꎬ
一个是保持所有输入不变(即自由响应对应的输入

序列)得到的输出ꎬ第二个是在 ｔ 时刻对第 ｊ 个输入

施加一个阶跃 δꎬ其他输入保持不变ꎬ得到的输出ꎮ
那么阶跃响应系数可以近似为公式(１９)所示:

ｇｉｊ(ｋ) ＝
ｙｉｊ( ｔ ＋ ｋ) － ｆｉ( ｔ ＋ ｋ)

δ (１９)

式中:ｙｉｊ( ｔ ＋ ｋ)—扰动后的输出ꎻｆｉ ( ｔ ＋ ｋ)—自由响

应ꎻδ—阶跃扰动ꎮ
由此构造的动态矩阵 Ｇ 是一个块矩阵ꎬ其结构

如公式(２０)所示:

Ｇ ＝

Ｇ(１) ０ 􀆺 ０
Ｇ(２) Ｇ(１) 􀆺 ０
⋮ ⋮ ⋱ ⋮

Ｇ(Ｎ２) Ｇ(Ｎ２ － １) 􀆺 Ｇ(Ｎ２ － Ｎｕ ＋ １)

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(２０)
２. ２. ３　 非凸优化问题的二次规划转化

由于预测模型是非线性的ꎬ预测输出与优化变

量 ΔＵ 的关系非仿射ꎮ 代价函数 Ｊ 的 Ｈｅｓｓｉａｎ 矩阵

可能非正定ꎮ
令 ε ＝ ｙ^ － ｒꎬ则代价函数展开为:
Ｊ ＝ εＴＱε ＋ ΔＵＴＲΔＵ (２１)

其中 Ｈｅｓｓｉａｎ 矩阵为:

Ñ
２Ｊ ＝ ∂２Ｊ

∂ΔＵ２ ＝ ２ ∂ε
∂ΔＵ( )

Ｔ
Ｑ ∂ε

∂ΔＵ( ) ＋

２∑
ｉ
εｉ Ｑｉｉ

∂２ εｉ

∂ΔＵ２ ＋ ２Ｒ (２２)

　 　 其中ꎬＱ > ０ 时ꎬ２ ∂ε
∂ΔＵ

æ

è
ç

ö

ø
÷

Ｔ

Ｑ ∂ε
∂ΔＵ

æ

è
ç

ö

ø
÷项正定ꎻ由于

∂２εｉ

∂ΔＵ２取决于 ＬＳＴＭ 的高阶导数(非线性激活函数的

二阶导非零)ꎬ该项符号不确定ꎬ导致Ñ
２Ｊ 可能含负

特征值ꎬ故优化问题非凸ꎮ
为了求解这个非线性优化问题ꎬ将其转化为二

次规划问题ꎬ然后使用带投影的梯度下降法求解ꎮ
首先将代价函数在当前控制序列的初始猜测点进行

近似ꎬ将其近似为二次型ꎻ其次由于模型非线性ꎬ需
要多次迭代修正ꎮ 使用一阶泰勒展开对预测输出进

行近似ꎬ如式(２３)所示:
ｙ^(ｋ ＋ ｊ ｜ ｋ) ≈ ｙ^０(ｋ ＋ ｊ ｜ ｋ) ＋ Ｇ ｊΔＵ(ｋ) (２３)

式中: ｙ^０ ( ｋ ＋ ｊ ｜ ｋ)—初始控制序列下的预测输出ꎻ

Ｇ ｊ—输出关于控制序列的梯度矩阵ꎻΔＵ( ｋ)—控制

增量ꎮ
将其代入广义预测控制的代价函数公式(１０)ꎬ

代价函数可以近似为公式(２４)所示:

Ｊ ≈∑
Ｎ２

ｊ ＝ Ｎ１

‖ ｙ^０ ＋ Ｇ ｊΔＵ － ｒ‖２
Ｑ ＋ λ∑

Ｎｕ－１

ｊ ＝ ０
‖Δｕ(ｋ ＋ ｊ) ‖２

Ｒ

(２４)
式中:ΔＵ—待优化序列ꎻＱ、Ｒ—对应的权重矩阵ꎮ

将其展开并忽略常数项ꎬ可以写成标准的二次

规划形式ꎬ如公式(２５)所示:

Ｊ ＝ １
２ Δ ＵＴＨΔＵ ＋ ｆ ＴΔＵ (２５)

其中:

Ｈ ＝ ２∑
Ｎ２

ｊ ＝ Ｎ１

ＧＴ
ｊ Ｑ Ｇ ｊ ＋ ２Ｒ

－

ｆ Ｔ ＝ (２∑
Ｎ２

ｊ ＝ Ｎ１

ＧＴ
ｊ Ｑ( ｙ^０ － ｒ))

Ｔ

ì

î

í

ï
ï

ïï

(２６)

２. ２. ４　 约束处理与实时求解

考虑阀门的物理限幅ꎬ输入约束如公式(２７)
所示:

ｕｍｉｎ ≤ ｕ( ｔ ＋ ｊ) ≤ ｕｍａｘ (２７)
考虑对于执行器的保护ꎬ输入变化率约束如公

式(２８)所示:
Δｕｍｉｎ ≤ Δｕ( ｔ ＋ ｊ) ≤ Δｕｍａｘ (２８)
根据燃气轮机性能测试规范 ＡＳＭＥ ＰＴＣ ２２ －

２０２３ 标准[２２]ꎬ输出安全约束如公式(２９)所示:
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ｙｂｕｆｆｅｒ
ｍｉｎ ≤ ｙ^( ｔ ＋ ｊ ｜ ｔ) ≤ ｙｂｕｆｆｅｒ

ｍａｘ (２９)
式中:上标 ｂｕｆｆｅｒ—缓冲约束ꎮ

对于二次规划问题ꎬ使用带投影的梯度下降法

求解ꎬ具体如公式(３０)所示:
ΔＵ( ｌ ＋１) ＝ ΠΩ(ΔＵｌ － α ÑＪ(ΔＵｌ)) (３０)

式中:ΠΩ—投影算子ꎻα—学习率ꎻÑＪ—代价函数 Ｉ
的梯度ꎻ上标 ｌ—迭代次数ꎮ

梯度的计算如公式(３１)所示:
ÑＪ ＝ ＨΔＵｌ ＋ ｆ (３１)

其中 Ｈｅｓｓｉａｎ 矩阵的计算见公式(２８)ꎬ其中 Ｇ 矩阵

如公式(３２)所示:

Ｇ( ｉ) ＝

∂Ｐ
∂Ｗｆ

∂Ｐ
∂θＩＧＶ

∂Ｎ
∂Ｗｆ

∂Ｎ
∂θＩＧＶ

∂Ｔ５

∂Ｗｆ

∂Ｔ５

∂θＩＧＶ

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú (３２)

梯度更新如公式(３３)所示:

ΔＵ( ｌ ＋ １
２ )( ｔ) ＝ ΔＵｌ( ｔ) － αｌ σｌ (３３)

式中:α( ｌ)—第一次迭代的步长ꎬ 采用固定步长

０. ０１ꎮ
投影到可行域如公式(３４)所示:
ΔＵ( ｌ ＋１)( ｔ) ＝ ΠΩ(ΔＵ ｌ ＋ １

２( )( ｔ)) (３４)

投影算子ΠΩ将向量 ΔＵ(ｌ ＋ １
２ ) (ｔ)的每个元素独立

地裁剪到其对应的约束区间ꎮ 同时ꎬ通过 ΔＵ(ｌ ＋１) ( ｔ)
计算对应的 Ｕ( ｌ ＋ １)( ｔ)ꎬ并检查其是否满足绝对输入

约束和输出约束ꎮ 如果不满足ꎬ则将违反约束的

ΔＵ( ｌ ＋ １)( ｔ)的相应元素进一步投影到边界上ꎮ 迭代

的终止条件需满足实时性要求ꎬ达到最大迭代次数

５０、代价函数小于 １０ － ３均可终止迭代ꎮ 取优化解的

第一个元素ꎬ将 ｕ( ｔ) ＝ [Ｗｆ ( ｔ)ꎬθＩＧＶ ( ｔ) ] Ｔ 作用于

Ｔ６０ 燃气轮机的模型ꎮ 在下一个采样时刻ꎬ重复从

初始化到应用控制量的计算步骤ꎮ 将上一时刻优化

得到的控制序列去掉第一个元素ꎬ保留剩余元素ꎬ并
在末尾追加零向量ꎬ形成新的初始猜测序列用于初

始化ꎬ以此实现滚动优化ꎮ
针对 Ｔ６０ 燃气轮机详细设计了基于 ＬＳＴＭ 模型

的非线性广义预测控制器ꎮ 设计涵盖了控制器参数

设定、严格的物理与操作约束 (输入 /输出 /变化

率)、实时优化求解算法 (带投影的梯度下降法) 及

其实现细节ꎮ 该设计成功地将基于数据驱动的

ＬＳＴＭ 预测模型与 ＧＰＣ 优化控制框架相结合ꎬ并通

过高效的数值方法和硬件加速满足了严苛的实时性

要求ꎬ为提升燃气轮机在复杂工况下的控制性能提

供了一种有效的工程解决方案ꎮ

３　 仿真结果与分析

为了验证 ＬＳＴＭ 模型的预测效果与 ＮＧＰＣ 控制

器的控制效果ꎬ在 ＭＡＴＬＡＢ 中编写了计算机代码ꎬ
分别进行了启动过程输出参数跟踪预测与阶跃升降

负荷仿真实验ꎮ 为评估控制器实时性能ꎬ使用 Ｓｉｍ￣
ｕｌｉｎｋ Ｐｒｏｆｉｌｅｒ 工具对单步优化求解耗时进行统计ꎬ结
果如表 ３ 所示ꎮ ５ 次仿真平均耗时为 ７. ９ ｍｓꎬ满足

控制周期 １００ ｍｓ 的 １０％以内要求ꎮ

表 ３　 单步优化求解耗时统计

Ｔａｂ. ３ Ｓｉｎｇｌｅ￣ｓｔｅｐ ｏｐｔｉｍｉｚａｔｉｏｎ ｓｏｌｖｉｎｇ ｔｉｍｅ ｓｔａｔｉｓｔｉｃｓ

运行次数 耗时 / ｍｓ

１ ７. １

２ ７. ５

３ ８. ２

４ ７. ８

５ ８. ９

平均 ７. ９

标准差 ０. ６

３. １　 Ｔ６０ 燃气轮机启动过程输出参数跟踪预测仿真

基于所建立的 ＬＳＴＭ 模型启动过程各输出参数

预测曲线ꎬ如图 ４ ~图 ６ 所示ꎮ

图 ４　 ＬＳＴＭ 模型温度 Ｔ５透平排气预测曲线

Ｆｉｇ. ４ Ｔｕｒｂｉｎｅ ｅｘｈａｕｓｔ ｔｅｍｐｅｒａｔｕｒｅ Ｔ５ ｃｕｒｖｅ

ｐｒｅｄｉｃｔｅｄ ｂｙ ＬＳＴＭ ｍｏｄｅｌ
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图 ５　 ＬＳＴＭ 模型转速 Ｎ 预测曲线

Ｆｉｇ. ５ Ｔｕｒｂｉｎｅ ｓｐｅｅｄ Ｎ ｃｕｒｖｅ ｐｒｅｄｉｃｔｅｄ ｂｙ ＬＳＴＭ ｍｏｄｅｌ

图 ６　 ＬＳＴＭ模型透平输出功率 Ｐ预测曲线

Ｆｉｇ.６ Ｔｕｒｂｉｎｅ ｏｕｔｐｕｔ ｐｏｗｅｒ Ｐ ｃｕｒｖｅ ｐｒｅｄｉｃｔｅｄ ｂｙ ＬＳＴＭ ｍｏｄｅｌ

Ｔ６０ 燃气轮机的 ＬＳＴＭ 模型对启动过程中的透

平排气温度、转速以及输出功率分别进行了跟踪预

测ꎬ预测结果显示ꎬ所建立的 ＬＳＴＭ 模型能够实现对

启动过程关键参数的精确跟踪预测ꎬ预测数据与现场

机组启动过程运行数据贴合ꎮ
３. ２　 Ｔ６０ 燃气轮机阶跃升降负荷仿真

为评估本研究所设计的控制器性能ꎬ将 ＮＧＰＣ
控制器与 Ｔ６０ 燃气轮机现有的 Ｍｉｎ￣Ｍａｘ 控制器在相

同负载扰动下的响应进行了比较ꎮ
在阶跃甩负荷与升负荷实验中ꎬ模拟因雷击或

机械故障引起的电源故障造成的负载突然下降ꎬ以
及负载需求突然增加的情况ꎮ 负载阶跃响应曲线如

图 ７ 所示ꎮ 仿真结果如图 ８ ~ 图 １１ 所示ꎬ可以看出

ＮＧＰＣ 控制器实现了控制目标ꎮ 图 ８ 显示了 ＬＳＴＭ
模型功率跟踪曲线ꎮ 根据计算ꎬ在阶跃降负荷后

ＮＧＰＣ 控制器可以在 ６. ９ ｓ 的时间内将响应带到

期望值ꎬ期间响应超调为 ３. ８％ ꎻ在阶跃升负荷后

ＮＧＰＣ 控制器的调节时间为 ７. １ ｓꎬ负荷响应的超调

为 ４. ２％ ꎮ 同时燃料量调节曲线如图 ９ 所示ꎬ本研

究所设计 ＮＧＰＣ 控制器对比 Ｔ６０ 燃气轮机现有 Ｍｉｎ￣
Ｍａｘ 控制器控制动作更加平滑ꎬ获得了更小的超调

量ꎬ有效避免了燃料过度消耗ꎮ

图 ７　 负载阶跃变化曲线

Ｆｉｇ. ７ Ｌｏａｄ ｓｔｅｐ ｃｈａｎｇｅ ｃｕｒｖｅ

图 ８　 ＬＳＴＭ 模型功率跟踪曲线图

Ｆｉｇ. ８ ＬＳＴＭ ｍｏｄｅｌ ｐｏｗｅｒ ｔｒａｃｋｉｎｇ ｃｕｒｖｅ ｄｉａｇｒａｍ

图 ９　 负载变化期间燃料量 Ｗｆ 调节曲线

Ｆｉｇ. ９ Ｆｕｅｌ ｑｕａｎｔｉｔｙ Ｗｆ ａｄｊｕｓｔｍｅｎｔ ｃｕｒｖｅ

ｄｕｒｉｎｇ ｌｏａｄ ｃｈａｎｇｅｓ
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负荷变化期间转速 Ｎ 的变化曲线如图 １０ 所

示ꎮ 在负荷阶跃降低瞬间因涡轮功率大于负载功率

导致过剩的机械能转化成动能ꎬ转速会瞬间飙升ꎬ可
以看出 ＮＧＰＣ 控制器通过减少燃料量抑制超调ꎬ比
Ｍｉｎ￣Ｍａｘ 控制器调节峰值低 １２. ５％ ꎬ同时控制动作

更加平滑ꎻ升负荷后因负载功率大于涡轮功率动能

转化为电能导致转速瞬时跌落ꎬＮＧＰＣ 控制器通过

调节燃料补偿使转速恢复到额定值ꎬ与 Ｔ６０ 燃气轮

机现有 Ｍｉｎ￣Ｍａｘ 控制器相比转速恢复时间缩短

２０％ ꎮ 仿真实验过程中 ＮＧＰＣ 控制器的整个控制过

程使转速波动更小ꎬ有效提升了控制器的鲁棒性与

燃机转子轴承的安全性ꎮ

图 １０　 负载变化期间转速 Ｎ 调节曲线

Ｆｉｇ. １０ Ｔｕｒｂｉｎｅ ｓｐｅｅｄ Ｎ ａｄｊｕｓｔｍｅｎｔ ｃｕｒｖｅ
ｄｕｒｉｎｇ ｌｏａｄ ｃｈａｎｇｅｓ

透平排气温度 Ｔ５ 的变化曲线如图 １１ 所示ꎮ

图 １１　 负载变化期间透平排气温度 Ｔ５ 调节曲线

Ｆｉｇ. １１ Ｔｕｒｂｉｎｅ ｅｘｈａｕｓｔ ｔｅｍｐｅｒａｔｕｒｅ Ｔ５ ａｄｊｕｓｔｍｅｎｔ

ｃｕｒｖｅ ｄｕｒｉｎｇ ｌｏａｄ ｃｈａｎｇｅｓ

由图可知ꎬ负荷阶跃降低延迟后由于燃料量骤

降导致燃烧温度下降ꎬ随后因空气过量(燃料 /空气

比失调)燃烧不稳ꎬ局部高温使 Ｔ５ 温度回升ꎬＮＧＰＣ
控制器通过协调Ｗｆ与 θＩＧＶ减小速度ꎬ抑制温度波动ꎬ
有效避免了由于负载波动导致的透平排气超温ꎬ将
Ｔ５一直限制在最大约束以下ꎬ且调节过程中的超调

明显小于 Ｔ６０ 燃气轮机现有的 Ｍｉｎ￣Ｍａｘ 控制器ꎬ控
制动作也更加平滑ꎮ

大范围阶跃负荷扰动下 ＮＧＰＣ 控制器与 Ｔ６０ 燃

气轮机现有 Ｍｉｎ￣Ｍａｘ 控制器的整体性能参数对比见

表 ４ꎮ

表 ４　 阶跃负荷性能参数对比

Ｔａｂ. ４ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｐｅｒｆｏｒｍａｎｃｅ ｐａｒａｍｅｔｅｒｓ ｆｏｒ ｓｔｅｐ ｌｏａｄ

性能指标 ＮＧＰＣ 控制器 Ｍｉｎ￣Ｍａｘ 控制器

负荷阶跃下降超调量 / ％ ３. ８ ６. ０

负荷阶跃上升超调量 / ％ ４. ２ ６. ５

负荷阶跃下降调节时间 / ｓ ６. ９ ７. ８

负荷阶跃上升调节时间 / ｓ ７. １ ８. ０

转速违规约束率 / ％ ０ ２. ０

排温违规约束率 / ％ ０ ２. ０

转速波动峰值降低 / ％ １２. ５ ０. ３

由表 ４ 可知ꎬＮＧＰＣ 控制器降负荷响应超调量

从 ６. ０％降至 ３. ８％ ꎬ升负荷响应超调量从 ６. ５％ 降

至 ４. ２％ ꎬ调节时间缩短ꎬ燃料量调节曲线更加平

滑ꎬ避免了燃料过度消耗ꎬ使响应曲线平滑度提高ꎬ
同时确保了转速与排气温度约束的零违规率ꎮ

４　 结　 论

针对传统控制策略在处理燃气轮机强非线性、
多变量耦合特性时的局限性ꎬ提出了一种基于长短

期记忆网络的燃气轮机建模方法ꎬ并基于 ＬＳＴＭ 模

型设计了燃气轮机非线性广义预测控制器ꎮ 最后通

过在 ＭＡＴＬＡＢ 中编写代码对所建立模型和设计控制

器的精度与性能进行了仿真验证ꎮ 得到以下结论:
(１) 提出的基于数据驱动的 ＬＳＴＭ 神经网络模

型ꎬ对 Ｔ６０ 燃气轮机启动过程中的关键参数实现了

高精度建模ꎮ 模型预测结果的相对误差均低于

１􀆰 ５％ ꎬ精确捕捉了燃气轮机启动过程的动态特性ꎮ
(２) 相较于传统的 Ｍｉｎ － Ｍａｘ 控制器ꎬ本文设

计的基于神经网络的燃气轮机非线性广义预测控制

器鲁棒性更强ꎮ 在大范围阶跃负荷扰动下对关键参

数的控制效果更优ꎬ对目标燃气轮机的参数整定具有

更好的适应效果ꎮ
(３) 所设计的控制器满足重型燃气轮机实时性
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要求ꎮ 单步计算耗时平均为 ７􀆰 ９ ｍｓꎬ占 １００ ｍｓ 控制

周期的 ９％以内ꎬ证明了该算法在典型工业控制周期

内的可实现性ꎮ
本研究主要基于仿真模型ꎬ未来研究重点是搭建

硬件在环系统(如工业 ＰＬＣ)实现对整个控制策略的

实际效果验证ꎮ
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