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Abstract: To improve the absorption level of renewable energy sources and the low-carbon and economic
performance of the integrated energy system (IES), as well as to realize the collaborative interaction of
multi-agent in the system, a low-carbon optimization scheduling strategy for hydrogen-containing 1ES
based on Stackelberg game was proposed. Low-carbon operation of the system was achieved by introdu-
cing a green certificate ( GCT) -carbon emission trading (CET) joint trading mechanism into the incen-
tives for energy provider ( EP); a thermoelectric flexible output response model was constructed by in-

tegrating organic Rankine cycle (ORC) and electric boilers (EB) on the source side, and a hydrogen ener-
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gy multi-level utilization model was established to cope with fluctuations in renewable energy sources and
changes in load; user integrated demand response was considered on the load side, and a leader-follower
Stackelberg game dynamic pricing model was constructed, with the integrated energy system operator as
the leader and energy provider and load aggregator as followers; the NSGA- Il -SQP algorithm was used to
solve the interaction strategy of the three parties when the objectives were optimal. The model effective-
ness was verified using a park in Guiyang City as a case study. The results show that the joint operation of
the GCT-CET mechanism better improves both economic and environmental benefits, reducing system car-
bon emissions by 4.22% and total cost by 1.92% . After introducing Stackelberg game, the revenue of the
energy system operator increases by 12.81% , the revenue of energy provider increases by 2.31% , and the
surplus of the load aggregator increases by 6.31% . This effectively ensures information confidentiality and
benefit balance among the three parties, providing a feasible solution for multi-agent coordinated scheduling.
Key words: green certificate (GCT) , carbon emission trading( CET) mechanism, thermoelectric flexible

response, hydrogen energy utilization, Stackelberg game, low-carbon economic scheduling
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PRSP

P (t) = Py (1) + Py (1) (30)
3.2 ZAERERFIZER

1ESO LA A B Wi s fe KA I B2 B bR il A 3
il L 7RISR S R A RE TR A A R AR U £
3.2.1 Hbrek%k

IESO 1 H bR s BT (31) o

maxF g, = 2;<ﬁ<w +fu () = £,(£)) (31)

¢ B 2 TESO 8485 F FIHAGRAF LA £ (1) N .
Jo(t) = (Pypp(t) = Py (t))p, (1) +
Quor () Py (1) (32)
¢ I 20 FL DO AR R VR S 4 JAS o, (2) FTFHK(33)
TR,
fra (1) = max (P, (1) = P, (1),0)p, (1) +
min(P,...(¢) = P, () ,0)py 4, (1)
Pra(t) = Py (1) = Py (1)

Py (1) = 3 Pt (1) + 3 P (1) + Py()
(33)

P, (O F Py (055 k B XL HLALRDGAR
HLAFF R R LI E kW sp,, 0 (8) s pag, (1) — M
HL /1 ( Time-of-Use pricing, TUP) #0143 B, A ( Time-
Based Pricing, TBP) ;n, ., , npy—X T IR FEHLFIE AR
REHLA B,

¢ I ZIMN EP W SEREIR Y A £, (¢) 7T I (34)
FR o

1, (1) :fel,b(t> +fhl,b(t)
San(t) = Psupp]y(t)pel,b(t)
fhl,b(t) = (P (1) +PGB(t))phl,b(t) (34)
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3.2.2  ZRAME
FARE TES A2xBkid 1ESO B 55 %™
HEAT2E S, # TESO 1 ) 65 H A% PR Gn =X (35) 1
K (36) UL HR R,
{Pd,mp(t) < Pu(8) < pyy, (1)
Pt (1) < Py (1) < pug, (1) (35)
{p?ﬁ‘“(t) < pu (1) < ppt (1)
pi (1) < py, (1) < pi* (1) (36)
[l p,,  (0) Fpy (1) WREFF S B L9 %
4, BRI LA (37) #0R .
Spa () ST pre
Spu ()< )
3.3 fAmRAaHER
3.3.1 Hbrek%k
R PRBSCHS 1 PR TR DR AR AEAS Rl Pl
58 T 118 et - R 3 B 1) B0 R B, LA 1Y HL bR R
BRI KA 5 T 4, BV P 099 3580 o B0 B TR
WA Z 2, 4n50(38) ~ X (39) iR,
maxF, = ET, (%m(i) ) (Pel,user(t)De,s(w Dm

t=1 +Ph],user(t)Dh,5(t)

(38)

Vo) = 0P () = 5 (P (D)7 4
0Pt (1) = 5 (P (D) (39)
K., () —H PR RE G, 0, Flv, ,a,— K

ROH R TP X B ARBE R ey 2R K
ST M RGP K, LA BA — 5 i 7 fig
Ao S DA S G i R S T I o AN

P (0) , ATHIBE LS Py L (2) 6

P e (1) = Pry e (1) + Py e (1) (40)

P (1) = Py e (1) = Pcll],user<l) (41)
3.3.2  AHEM

P e (1) 15 /2 30 (42) FIC(43) 7R 19 249K
Lo

0<P,,..(t) sSPF() (42)

Z Psel,user( t) At = Wsel (43>

ST W, —24 h PRSP FL 600 )RR, W
P (1) W Y2 2
0 <P, .(t) < Py(t) (44)
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Fig. 5 Multi-agent Stackelberg game framework

4.1 Stackelberg HFEHEAREE

BT 3 A~ E RIS 15 DB A PR P AR5
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SQP AR 7, AEMHEZR TR 38 5 B AN 5 A A
BREMAR A B (ERECR R B B SN RA rT7ER
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SRR R A S, TR R =7 BRI ROR
VIS A 8 &5 KUK o 72 I ) 510 A 44 2 |3
A VR B PSR R F LR g B, HA
PR PR SR o R A B 5 B ORI, PRI 12 32 AT
AR DL DU e dl 3Rk .

N;(IESO U EP U LA) 3p0 5

{3”’ ’6LA % ;Fuzso§ { Fep  Fry } (45)

TCHBAME & 2 55 R AR LUK ST pR %L 3
R, NNHIEERECE 3, 2 58 A 1ESO 5
EP LI LA;IESO SRug 5 & — RN B M, £oR
A pso = (pas (0) sy () oS, (0) o fa, (1)) 5
EP SRISAESE GT M GB W th T, g om 1) it oy
8 = (Pup,Poy) s LA SRBSERIE VR T far D6 v
I 61y = (P e (1) 5 Qe (1)) BN 3 Fr Fyp 5
F. o0 TESO \EP Fl LA 25 pR%k,

4.2  Stackelberg I E RN FEME— S

TEA WE ST H Y Stackelberg 1 2% ot 75 1, 24
IESO 5 EP Jz LA #BANAE o 28 [ B 5 W R AR HL
TR 2 BT A A S5 A e A7 A HLME—

BE(Prrso »Op »O1n ) HAS SCHFFT 11 32 DB 25 2
fiff, DUV A2

Fiiso (Priso »0gp 010 ) = Friso (Pigso 0,014
Fip(Priso +0up 014 ) ZFip (Priso »0pp 2014 )
Fii(Pieso s0rp 501 ) ZF 14 (Priso -0 5014
4.3 KERRE
4.3.1 Stackelberg 3K fit

h T SR fi# Stackelberg THIE 1YV i, 2 H T —
Tl & NSGA-T1-SQP 1 GUROBI 3K fiff £ i Bk 4 3K
fift i, T (IESO) 2R A NSGA- T1-SQP #vk iF
ik, XTiapiE  EP DL H YR o R4k B #x,
U 1 R 07 A ) B P 9 B RN A RE R TR A5 1)
f 13RS5 RIS, LA DL/ Mb B REFERCA H A% 5K
it dpe P B fur i 7 F {8 GUROBI R figt i X AR 5 )
TREHATR A, RS RRE 6 Fis .

4.3.2 NSGA-II-SQP ##:

NSGA- I -SQP B3 J2 & Xt Pk A 32 il HE 7 55t
FREBAEAT ) R RIS 4 A —Fh A Ak
NSGA- Il 192 HFrLALRRE AT I IR Bk e 21~ H
B Z A HEA T 5OUAE T SQP 53092 DU 308 o 5 4 )

(46)

JE A S B RS R i A . M 25 R BE
REMSZERF H U 2 SR IR R RETT , UREAE I ALt A
SRR BRI A6 1 | DT AR I A ) T8 B 1 A
R, AR AR ANIA 7 B

BiRl
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SR, FEERRA
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Fig. 6 Flowchart of Stackelberg game

I

NSGA-IIH LS HI th ik |

TH5IE L BE SQPZ Y kit

PR R S RCHE Y

QRS

Hessianffi [(4115

SRAfF [ A5

izes e NE A VLl

£
e e A LERK

EEAMV§:3

SRR
21k e

JEENSCA-THR A
KA NS

| —

7 NSGA-II-SQP Ei%&ifiiEE
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Fig. 8 Forecast values of renewable energy
power generation, electric load,

heat load and cold load

Bl T el X RE PR B AR 48 ST O T e s
ARG 1 S IR, 45 1 REASCRR IR S LR
BT AL, T e & R R R B A A, SR
i 1 R,

x1 HEEMD

Tab. 1 Time-of-use tariff!*!

fifEL/h Wit/ (JT-kW ' -h ")
0:00 —6:00 0.49
23:00 -24:00 0.49
6:00 —13:00 0.49
19:00 —23:00 1.21
13:00 - 19:00 0.73

ST HLA R TESO il % 20245 W 8 L 4% SR B 1)
R ORI, 4R W 2 = AR R v () I 25 0 e 5 R
JEPHEEHR . LAY R TESO 55 Ha I [a] 1) B8 5 58
AR AR 2 100,00 - 24.00 19 ERIHL Ay 0. 36
J6/ (kW +h) . TES PHEBIEESEO PR 56 R 480
2 PN,

®2 REEARSYRE

Tab. 2 Basic parameter settings of the model

Z o Z M BoME E I HofH
g 0.23 Agre A 0.35.0.65 Phlmin Phima” (JG-kW T-h71) 0.15.0.5
a; by ¢ 36,-0.38.0.003 4 || A 0.7 P et/ (JEkW 'R ™h) 0.45
K,k / (kg kW 1h=1) 1.51.1.1 P /KW 500 Bt/ (JE-kW 1 -h=1) 0.7
¢/ (kg-kW'-h=1) 0.252 Mk 0.6 v, 1.5
6/(JG-kg™") 0.252 PR wr/kW 400 a, 1.1
l [0,20] NHrC, e \MHEC, b 0.45.0.55 vy 0.000 9
Awis 0.9 Piiynrc 250 a, 0.0011

RS XN A R TERT LA KT E
P, LA A oA 2 A R) A5 5 i SoAs e i — 3k,
Bk AT FEAE BB IR IB 1B N 30% , 1R HUAC A0 H
P05 B by, AW SR Be i i 17 M Hag 5 i /2
XFF AW 5T 88 BB R, FE MATLAB 3R 5% T 44
LA TR A A 38 5 8 GUROBI 2K fif % 217
KA

S UE TSR AL A R BB LT 5 AN,
P« FE g 5 - AL = X IR R B E
CET/GCT Ll , CHP R &4 i\ BEFH  stackelberg
TR DU R AZ O R G  Z2pr b — (AR - FAE

REVEIH AN 11k 7 55 P R , e A A 2 3t
IrZEUE A . A SBT3 PR,
x3 BHRIRERR

Tab. 3 Scene setup situation

1£4; CHP Z(BE  Stackelberg
Y5 CET
CHP ik FH [LE
1 vV X Vv X X X
2 vV X X Vv X X
3 vV vV X vV X X
sV OV x VY x
s VoV ox VoV

TRV R xR
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5.1 AERUEEITLLSHT

NEGUEAS SCHTHE NSGA-11-SQP S5k 78 1ES 1
AR BE v i A R, S B NSGA- 1T SQP kE—F FEAL
fE(PSO) KKT &1k 4 Fr AL %, N TESO
Wit 55 OB 18] P A A% O A8 B E AT T LG, AN [ 5303
WSS B M ST B] A 4 IR

R4 RS %M 1B R W S i)
Tab. 4 Different optimization algorithm convergence

values and convergence time

PRALF IESO W 45/7T A fil/s
NSGA- I -SQP 29 773.4 13 553.4
NSGA-II 28 589.3 17 643.2
SQP 27 544.9 1684.5
PSO 26 364.3 5892.7
KKT 27 719.4 294 686.2

SIS 4 AT NSGA- [ 24 R &R Ak o
B JRIEB A S5OKS B2 A J2 , T X TES v BB 5 55 4 3l R

(4n CHP #e b ) ” Sk AR R PE L A, B) i ARy
B, SQP Bk R HoRs BE & (BRI R R, 27 9 i
fife 3t B A JR I At , 2 B A R Bt , Jeik i 56 22 4K
T E oS i), R RS BRI SR
P A TCIRARIEAS B . KKT 55450 T2
Al R KKT R 12, B IR A d et 2 580 4
BORME” . NSGA-I1-SQP 454 1T NSGA- I (194 J= 8
FERES SQP MR PR S, 76 fRIIE 2 B AR
B REIRI S RWR A T SR A a] T3S O 1ES 5K
A PEZE R B R R B 3 5t . NSGA-T1-SQP fE#E £
H b7 ] $ 3 T 2 45 19 Pareto fif, ELUKS FF 05 £ 8 B0
Bl B T HAE TES & 2B AR T A,
5.2 BERERMEBSSH

Sy AR [ AL X 7 & IES 2855 A | ik
HE K AT P AR REVR TS AN R, R TR 3 ERE S
F50, WEA [ CET {4 | GCT 4% | IDR %Mz
PHAE 7 WA A8 bR B IF X Ee, HAR KR 0 3% 5
Fis

®5 AEHRTHAILE

Tab.5 Cost comparison in different scenarios

Yk RlA /T CET A/JC  GCT WA/JG  IDRAMEZR /6 BeHbicE /v WT iR/ % PV IHANR/ %
1 12021.7 2827.8 - - 134.6 85.4 97.2
2 11 627.4 2128.1 - - 128.1 86.2 98. 1
3 11 384.0 1572.2 -2212.6 - 116.3 89.6 98.7
4 10 323.1 1210.5 -2833.2 - 106.9 95.3 98.7
5 10 562.9 1210.5 -2833.2 130.7 101.6 95.3 98.7

TE. P -7 N IRUE.,

M5 ml AL XS 1 R s 2,5 2 A
AR 1394, 3 78, %5 2 19 CET AR WA
T 1, XA CHP 236 AR e it = R 48
MR, Yk 2 MRHRICEIR T Y5 1, Yo
2 WT AR L5 1 5 0.8% , PV IIH 28 % 1L
Yt 1 185 0.9% ., CHP R {4 B [m] f s A7 B 7
Il B HE T, S G I AR AL AR

H 5 Al XS 2 s 3,5 3 AL
WA L5 2 1% 243. 4 g6, 84 CET-GCT #F— 4
BE T REMATERE, GCT W R W, BEIR T
CET WA, 5%t 3 ok R & 518 2 0y 22 w3k
W1, A CET-GCT AT Lk — 5 s/ e HE ik, £ 8 mJ
A BB UR IR

XF st 3 fidgst 4,50 4 SRR L 5% 3

1 060.9 JC, #£ CET-GCT HlH A 15 7= 22 4y M
BEAY A b 38 S0 RE AR A — 2D 4t T &
TRRCR, GOT W g B4 I e feHR AT W 2 0y i
IS BEFI FHBRL ] DL E— A BRI RHE R, i —2F
SIHTATEN AR T s 1, st 4 RHER R B AR IR
K4.22% , BINAREIET 1.92% , 74 KAE T CHP
Pl TR T HLZE R T SRR AR THE T, DA
SURE 2 GUF FH G AT P BE VR I8 h S AR, B —
AR RE IR S e B A v Al RE DR IHAE , B2
SR G S B R I R AR T

Ykt 4 59505 AT, F5 5 AL
A5t 4 5 239.8 Jo, 7E LA 35| A Stackelberg
25 F0 IDR J& , S48 HA sUA S5 18 A ke A= 22 4k, B
TR 1 R R e A A R GE S RAS A i B
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5.3 #[E Stackelberg ZERIHERUIZE

I WIH Stackelberg [HZEHLEIXT IES N2 T4 F]
fit 43 T ) ELA S | 3 — 25 B0 (2 AR R A R =
TrWas A T A R AT E ST R 4 5
505 A BRI W B ARG R N3k 6
71 5 (RIS 38 o % AR g Bk AR B AR Al 2 dn
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Tab. 6 Income of each agent

1ESO EP Y25/ LA W9
Y& _ . »
Wezs /ot Jo TR/ T
4 26 392.5 24 922.3 34 285.9
5 29 773.4 25 498.8 36 449.3
45000 —— IESOY 25
——EPY3E
40000 | — AR
R
€ 35000
=
&
¥ 30000 -
I')é
m
25000
20000 1 1 1 1 1 1
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BARUAL
9 Stackelberg U &

Fig. 9 Convergence of Stackelberg equilibrium
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Fig. 10 IESO dynamic heat purchase and sale prices
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Fig. 11 IESO dynamic electricity purchase and sale prices
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Fig. 12 Power energy scheduling
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