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基于双延迟深度确定性策略梯度算法的燃煤机组耦合
碳捕集系统优化调度研究

钱烽雷１ꎬ张子腾１ꎬ王思腾２ꎬ吴　 啸２

(１. 中国能源建设集团江苏省电力设计院有限公司ꎬ江苏 南京 ２１１１０２ꎻ ２. 东南大学 能源与环境学院ꎬ江苏 南京 ２１００９６)

摘　 要:配备碳捕集系统是实现燃煤机组低碳化改造的重要途径ꎬ但燃煤机组耦合碳捕集系统存在复杂的电、热、
碳耦合关系ꎬ需要通过优化调度合理分配系统出力ꎬ以保障其经济、低碳、灵活运行ꎮ 由于电、碳负荷的强随机波动

和机组宽工况运行的非线性特征ꎬ基于线性模型的常规优化调度方法难以取得满意效果ꎮ 为此ꎬ提出一种基于双

延迟深度确定性策略梯度算法(ＴＤ３)的数据驱动燃煤机组 － 碳捕集系统智能调度方法ꎬ采用不确定负荷指令分解

策略提高智能体在不确定场景中的寻优效果ꎮ 设计计及机组煤耗成本、运维成本和负荷偏差惩罚的优化调度目标

函数ꎬ考虑设备运行、能量平衡和日均碳捕集率在内的调度约束ꎬ构建数学规划调度框架ꎬ进而将此框架转化为马

尔科夫决策过程ꎬ再通过智能体与仿真模型的离线交互训练ꎬ自适应学习不确定环境下的最优调度策略ꎮ 仿真结

果表明:在 １ ０００ ＭＷ 超超临界热电联产机组耦合单乙醇胺吸收碳捕集系统中ꎬ相比基于线性模型的混合整数线性

规划(ＭＩＬＰ)算法和常规不确定 ＴＤ３ 算法ꎬ所提方法的日运行总成本分别降低了 ０. ６６％和 ０. ５２％ ꎮ
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符号说明
ＣＦＰＵ—燃煤发电机组

ＨＰ—汽轮机高压缸

ＩＰ—汽轮机中压缸

ＬＰ—汽轮机低压缸

ＰＣＣ—燃烧后碳捕集系统

Ｐ—电功率ꎬＭＷ
η—ＣＯ２ 捕集率ꎬ％
ｍ—质量流量ꎬｋｇ / ｓ
ｓｔ—抽汽质量流量ꎬｋｇ / ｓ
Ｈ—热功率ꎬＭＷ
ｋ—公式中的转换系数

Ｆ—总成本ꎬ元
Ｃ—单位成本ꎬ元
Δｔ—优化间隔ꎬｈ
Ｕ—ＣＯ２ 储罐储量ꎬｔ
Ｌ—负荷指令

ｒ—奖励ꎬ元
α—步约束越界惩罚值

θ—评估网络参数

ϕ—策略网络参数

θ′—目标评估网络参数

ϕ′—目标策略网络参数

ａ—动作

ａ~—目标策略平滑动作

ｓ—状态

ｓ′—新状态

π(􀅰)—策略函数

ε—探索噪声

σ—探索噪声标准差

σ~—目标策略平滑噪声标准差

ｃ—裁剪限值

γ—折扣因子

ｙ—目标动作价值

Ｑ—动作价值函数

Ｊ—策略网络性能指标

▽—梯度算子

τ—软更新系数

下标:
ｔ—优化时刻

ｃｏａｌ—燃煤机组给煤

ｅｌｅｃ—供电

ｃａｐ—ＣＯ２ 捕集

ｈｅａｔ—供热

ｃｏｍｐ—压缩机

ａｌｌ—全部

ｉｍｂ—出力不平衡

ｏｍ—运行维护

ｍａｘ—最大值

ｍｉｎ—最小值

ｓｅｔ—设置限值

ｖｉｏ—越限

ｏｐｅ—运行

上标:
ｐｒｅ—预测

ｂｉａｓ—偏差

ｓｔｅｐ—步

ｅｐｉ—回合

引　 言

２０２４ 年ꎬ全国煤电发电量占比为 ５４. ８％ ꎬ是电

力行业碳排放的主要来源ꎬ约占全国 ＣＯ２排放总量

的三分之一[１]ꎮ 发改委«煤电低碳化改造建设行动

方案»明确指出ꎬ碳捕集利用与封存(ＣＣＵＳ)是煤电

低碳改造的重要技术方向ꎮ 其中ꎬ基于化学吸收的
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燃烧后碳捕集(ＰＣＣ)技术工艺成熟ꎬ已在国能锦界、
国能泰州[２]、加拿大边界大坝[３]、美国佩特拉诺

瓦[４]等项目示范应用ꎬ具备规模化、商业化水平ꎮ
耦合化学吸收燃烧后碳捕集系统对燃煤发电机

组运行提出了诸多挑战ꎮ 碳捕集过程需要从汽轮机

中抽取大量蒸汽为吸收剂再生供能ꎬ机组出力将降

低 ２０％ ~３０％ [５]ꎮ 同时ꎬ为适应机组变负荷运行下

的烟气变化ꎬ捕集系统也需频繁调整抽汽量ꎬ对机组

的稳定、灵活运行产生不利影响ꎮ 因此ꎬ对燃煤机组

耦合碳捕集耦合系统进行优化调度ꎬ协调系统的电、
热、碳出力ꎬ是保证机组经济、灵活、低碳运行的

关键ꎮ
目前ꎬ燃煤机组耦合碳捕集系统优化调度的相

关研究已有较多ꎮ Ｇｕｏ 等人[６]提出一种考虑深度调

峰的光伏 －燃煤碳捕集联合发电系统低碳、经济调

度方法ꎬ通过在优化指标中引入调峰成本及补偿收

益提高系统的经济性能和光电消纳水平ꎮ Ｚａｎｔｙｅ 等

人[７]提出一种包含可再生能源、燃煤碳捕集和电锅

炉的综合能源系统ꎬ通过构造两阶段配置 － 运行优

化策略ꎬ验证了系统具有在不同地区长时间运行的

优势ꎮ Ｌｉ 等人[８] 考虑到风力发电和用电需求的不

确定性ꎬ构建了包含燃煤 － 碳捕集机组电力系统的

日前随机优化调度模型ꎬ协同碳捕集及需求响应的

灵活性ꎬ降低了系统运行成本ꎬ促进了风电消纳ꎮ
Ｗｕ 等人[９]采用核密度估计法拟合年度碳价的非参

数概率分布模型ꎬ采用鲁棒优化进行燃煤碳捕集电

厂的电、碳协同调度ꎬ提高了系统在变动碳市场中的

降碳效果ꎮ
上述研究均采用简化的线性模型表征机组燃料

消耗 －发电 －碳排放间的关联ꎬ难以反映机组变工

况运行下的非线性特性ꎬ在优化过程中也未能充分

表征机组整体电、热、碳出力间的耦合约束ꎮ 为此ꎬ
Ｚａｎｔｙｅ 等人[１０]提出一种煤电碳捕集系统两阶段随

机规划调度模型ꎬ通过代数模型自学习方法(Ａｕｔｏ￣
ｍａｔｉｃ Ｌｅａｒｎｉｎｇ ｏｆ Ａｌｇｅｂｒａｉｃ Ｍｏｄｅｌｓ ｆｏｒ Ｏｐｔｉｍｉｚａｔｉｏｎꎬ
ＡＬＡＭＯ) [１１]拟合不同调度阶段的系统非线性模型ꎬ
并通过 ＢＡＲＯＮ 求解器求解ꎬ验证了电价波动对系

统盈利的增益效果ꎮ Ｃｈｅｎ 等人[１２] 采用深度置信网

络(ＤＢＮ)构建了燃煤机组耦合碳捕集系统的非线

性替代模型ꎬ提出了考虑可再生能源消纳、碳减排等

性能指标的电站碳捕集系统优化调度方法并采用粒

子群算法求解ꎬ结果表明ꎬ碳捕集系统灵活运行对发

电机组保供、调峰具有显著的支撑作用ꎮ
综上所述ꎬ目前有关燃煤机组耦合碳捕集系统

优化调度的研究大多基于反映系统核心变量间关联

的模型ꎬ根据负荷预测信息开展系统电碳出力的逐

时优化分配研究仍面临两方面主要问题ꎮ 一方面ꎬ
调度优化品质严重依赖于模型性能ꎬ线性模型优化

求解效率良好ꎬ但难以反映机组宽负荷运行中的非

线性耦合特性ꎬ而非线性模型存在难以求解、易陷入

局部最优的问题ꎻ另一方面ꎬ调度结果可靠性严重依

赖预测数据的质量或对其概率分布的掌握ꎬ而此类

信息在实际运行中常常难以准确提供[１３]ꎮ
近年来ꎬ人工智能算法的发展为复杂优化问题

的求解提供了崭新的解决思路ꎮ 深度强化学习

(Ｄｅｅｐ Ｒｅｉｎｆｏｒｃｅｍｅｎｔ ＬｅａｒｎｉｎｇꎬＤＲＬ)融合深度神经

网络与强化学习技术ꎬ通过多层特征提取增强环境

感知能力ꎬ构建状态、动作的高维映射关系ꎬ可显著

提升在复杂非线性、不确定性系统调度任务中的决

策精度与泛化能力ꎮ Ｌｉ 等人[１４] 采用 ＳＡＲＳＡ 算法ꎬ
在不同的碳配额条件下开展燃煤机组耦合碳捕集系

统的投标 －运行过程联合优化ꎬ可实现碳捕集率时

变的灵活运行ꎬ辅助决策者提高发电机组运行的折

现累计利润ꎮ 刘倩等人[１５] 利用深度 Ｑ 网络(Ｄｅｅｐ
Ｑ￣ＮｅｔｗｏｒｋꎬＤＱＮ)算法提升了求解园区综合能源系

统调度问题的源荷波动适应性和计算效率ꎮ 上述研

究采用强化学习中的价值学习算法ꎬ该算法在包含

高维、连续决策变量的复杂问题中计算能力不足ꎬ且
易忽略状态与动作间的关联信息[１６]ꎮ Ｌｉ 等人[１７] 采

用深度确定性策略梯度(Ｄｅｅｐ Ｄｅｔｅｒｍｉｎｉｓｔｉｃ Ｐｏｌｉｃｙ
ＧｒａｄｉｅｎｔꎬＤＤＰＧ)算法求解风 －光 －火 －储电力系统

的低碳、经济指标优化问题ꎬ验证了所提方法的电 －
碳协同优化优势ꎮ 尽管 ＤＤＰＧ 实现了决策变量空间

的连续化ꎬ但易出现 Ｑ 值过拟合问题ꎬ导致策略学

习失准[１８]ꎮ
上述研究从电力系统宏观视角开展基于 ＤＲＬ

的调度优化研究ꎬ但仍缺乏面向燃煤 － 碳捕集耦合

系统ꎬ且兼顾机组变工况非线性、电热碳耦合约束及

负荷不确定性的智能调度方法ꎮ 为此ꎬ本文提出一

种基于双延迟深度确定性策略梯度(Ｔｗｉｎ Ｄｅｌａｙｅｄ
Ｄｅｅｐ Ｄｅｔｅｒｍｉｎｉｓｔｉｃ Ｐｏｌｉｃｙ ＧｒａｄｉｅｎｔꎬＴＤ３)算法的 ＤＲＬ
燃煤机组耦合碳捕集系统调度方法:首先构建数据

驱动的系统替代模型ꎬ作为智能体实验训练环境ꎻ进
而构建基于数学规划算法的系统调度优化框架ꎬ将其
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转化为马尔科夫决策过程ꎬ并在状态中引入实际与预

测负荷间的偏差信息ꎬ增强对不确定性的适应能力ꎻ
最后利用 ＴＤ３ 的双评估网络、延迟更新及动作平滑

机制离线训练智能体ꎬ获得自适应调度策略ꎮ 案例

分析验证了本文所提方法的优越性ꎮ

１　 系统稳态模型构建

１. １　 系统运行流程

本文以 １ ０００ ＭＷ 超超临界燃煤热电联产机组

耦合基于质量分数为 ３０％ 单乙醇胺(ＭＥＡ)溶剂的

全烟气燃烧后碳捕集系统( Ｃｏａｌ￣Ｆｉｒｅｄ Ｐｏｗｅｒ Ｕｎｉｔｓ
ｉｎｔｅｇｒａｔｅｄ ｗｉｔｈ Ｐｏｓｔ￣Ｃｏｍｂｕｓｔｉｏｎ Ｃａｒｂｏｎ Ｃａｐｔｕｒｅ Ｓｙｓ￣
ｔｅｍｓꎬＣＦＰＵ￣ＰＣＣ) 为研究对象ꎬ 系统结构如图 １
所示ꎮ

图 １　 燃煤机组耦合碳捕集系统结构图

Ｆｉｇ. １ Ｓｔｒｕｃｔｕｒａｌ ｄｉａｇｒａｍ ｏｆ ＣＦＰＵ￣ＰＣＣ

系统主要运行流程为:燃煤锅炉排烟经脱硫、脱
硝、除尘、冷却等工艺处理后送入碳捕集系统吸收塔

底ꎬ在塔内与自塔顶流下的吸收溶液逆向接触ꎬ实现

ＣＯ２脱除ꎬ净化气从塔顶排出ꎮ 富含 ＣＯ２ 的溶液经

换热器加热后流入解吸塔顶ꎬ被供入再沸器的汽轮

机组中压缸(ＩＰ)出口抽汽加热ꎬ分离出 ＣＯ２后从塔

底流出ꎬ参与下一轮吸收 － 解吸循环ꎮ 抽汽经再沸

器利用后被冷凝ꎬ送入除氧器ꎬ与低压给水加热器给

水混合后流入高压给水加热器ꎬ混合为锅炉给水ꎮ
解吸塔顶流出的 ＣＯ２经压缩、冷却等工艺后送至储

罐储存ꎬ供下游用户使用ꎮ 系统典型工况运行参数

如表 １ 所示ꎮ

表 １　 典型工况下系统主要运行参数

Ｔａｂ. １ Ｍａｉｎ ｏｐｅｒａｔｉｎｇ ｐａｒａｍｅｔｅｒｓ ｏｆ ｔｈｅ ｓｙｓｔｅｍ ｕｎｄｅｒ
ｔｙｐｉｃａｌ ｗｏｒｋｉｎｇ ｃｏｎｄｉｔｉｏｎｓ

参数 数值

给煤量 / (ｋｇ􀅰ｓ － １) １０５. ５

输出电功率 / ＭＷ ８５２. ３

供热抽汽量 / (ｋｇ􀅰ｓ － １) ５０. ３

给水流量 / (ｋｇ􀅰ｓ － １) ７１５. ８

主汽阀开度 / ％ ９４. ３

主蒸汽压力 / ＭＰａ ２６. ５

烟气 ＣＯ２ 质量分数 / ％ ２１. ５

碳捕集抽汽量 / (ｋｇ􀅰ｓ － １) １０５. ８

分离器比焓 / (ｋＪ􀅰ｋｇ － １) ２ ６８７. ４

再沸器抽汽比焓 / (ｋＪ􀅰ｋｇ － １) １ ５８０

再沸器抽汽流量 / (ｋｇ􀅰ｓ － １) １９３. ６

再沸器温度 / Ｋ ３８６

贫液流量 / (ｋｇ􀅰ｓ － １) ２１３

碳捕集率 / ％ ８０

１. ２　 系统替代模型构建

前期研究已基于 ｇＣＣＳ􀅹仿真软件[１９] 搭建了上

述系统的机理模型ꎮ 考虑到模型中含有大量偏微分

方程及中间变量ꎬ计算复杂ꎬ不利于深度强化学习框

架下智能体的高效学习ꎬ本文采用 ＤＢＮ[２０]构建表征

核心变量间稳态关联的替代模型 ｆＣＦＰＵ￣ＰＣＣꎬ作为智能

体学习交互的环境ꎬ如式(１)所示:
(Ｐ ｔꎬηｔ) ＝ ｆＣＦＰＵ－ＰＣＣ(ｍｃｏａｌꎬｔꎬｓｔｃａｐꎬｔꎬｓｔｈｅａｔꎬｔ) (１)
ＤＢＮ 模型的输出验证结果如图 ２ 所示ꎮ

图 ２　 模型拟合精度验证结果

Ｆｉｇ. ２ Ｍｏｄｅｌ ｆｉｔｔｉｎｇ ａｃｃｕｒａｃｙ ｖａｌｉｄａｔｉｏｎ ｒｅｓｕｌｔｓ
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由图 ２ 可知ꎬＤＢＮ 模型能在宽工况运行范围内

很好地跟踪 ｇＣＣＳ 机理模型的输出ꎬ从而为训练的

可靠性提供有效支撑ꎮ
采用均方误差(ＭＳＥ)和决定系数(Ｒ２)对比了

ＤＢＮ、ＢＰ 神经网络和线性拟合 ３ 种建模方法的拟合

精度ꎬ结果如表 ２ 所示ꎮ

表 ２　 不同建模方法拟合精度指标对比

Ｔａｂ. ２ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｆｉｔｔｉｎｇ ａｃｃｕｒａｃｙ ｉｎｄｉｃａｔｏｒｓ ｏｆ
ｄｉｆｆｅｒｅｎｔ ｍｏｄｅｌｉｎｇ ｍｅｔｈｏｄｓ

建模方法
输出电功率 碳捕集率

Ｒ２ ＭＳＥ Ｒ２ ＭＳＥＲ２

ＤＢＮ ０. ９９８ １ ５. ８１ ０. ９９７ ４ ０. ０００ ２

ＢＰ 神经网格 ０. ９９０ １ ２１. ４７ ０. ９８９ １ ０. ００１ ５

线性拟合 ０. ９６９ ２ ９８. ６４ ０. ０９ ７０ ０. ００２ ５

由表 ２ 可知ꎬＤＢＮ 模型各输出的 ＭＳＥ 最小、Ｒ２

最大ꎬ说明其对机理模型的非线性特征捕捉能力与

拟合精度最优ꎬ证明了该建模方法的有效性ꎮ 对比

表 ２ 中的 ３ 种模型与 ｇＣＣＳ 机理模型的计算效率ꎬ结
果如表 ３ 所示ꎮ 由表 ３ 可知ꎬＤＢＮ 模型的单步计算

耗时为 ０. ０９ ｓꎬ远低于机理模型ꎬ可为智能体提供高

效、可靠的学习环境ꎮ

表 ３　 不同建模方法计算效率对比

Ｔａｂ. ３ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｃｏｍｐｕｔａｔｉｏｎａｌ ｅｆｆｉｃｉｅｎｃｙ ｏｆ
ｄｉｆｆｅｒｅｎｔ ｍｏｄｅｌｉｎｇ ｍｅｔｈｏｄｓ

建模方法 单步计算耗时 / ｓ

ＤＢＮ ０. ０９

ＢＰ 神经网络 ０. ０６

线性拟合 ０. ０５

ｇＣＣＳ 机理 ０. ５０

除采用 ＤＢＮ 模型来反映 ＣＦＰＵ￣ＰＣＣ 核心变量

的关联外ꎬ补充模型(２) ~ (４)ꎬ以量化各优化时刻

下的机组供热功率、ＣＯ２捕集量及 ＣＯ２压缩电耗:
Ｈｔ ＝ ｋｈｅａｔ􀅰ｍｈｅａｔꎬｔ (２)
ｍｃａｐꎬｔ ＝ ｋｃａｐ􀅰ｍｃｏａｌꎬｔ􀅰ηｔ (３)
Ｐｃｏｍｐꎬｔ ＝ ｋｃｏｍｐ􀅰ｍｃａｐꎬｔ (４)

２　 基于 ＴＤ３ 的燃煤机组 －碳捕集系统智能

优化调度

　 　 以第 １ 节构建的 ＤＢＮ 替代模型作为智能体交

互对象ꎬ将基于 ＴＤ３ 算法构建燃煤机组耦合碳捕集

系统经济、低碳智能优化调度框架ꎮ
２. １　 目标函数

智能优化调度框架以基于目标函数 －约束条件

的常规优化框架为基础ꎬ故首先进行该常规优化框

架的构建ꎮ
假设燃煤机组 － 碳捕集系统运行需满足外界

的电、热、碳负荷需求ꎬ本文优化目标函数如式(５)
所示:

ｍｉｎ Ｆａｌｌ ＝ Ｆｃｏａｌ ＋ Ｆｏｍ ＋ Ｆ ｉｍｂ (５)
其中ꎬ燃料成本可按式(６)计算得到:

Ｆｃｏａｌ ＝ Ｃｃｏａｌ ∑
２４

ｔ ＝ １
３. ６ｍｃｏａｌꎬｔΔｔ (６)

系统设备运行维护成本可按式(７)计算得到:

Ｆｏｍ ＝ ∑
２４

ｔ ＝ １
(ＣｅｌｅｃＰｔ ＋ ＣｈｅａｔＨｔ ＋ ３. ６Ｃｃａｐｍｃａｐꎬｔ) (７)

当系统的电、热、碳供应量高于负荷需求时ꎬ对
超出量进行切除ꎻ当低于需求时ꎬ须施加相应的负荷

不平衡惩罚ꎬ不平衡惩罚可按式(８)计算得到:

Ｆｉｍｂ ＝∑
２４

ｔ ＝ １
(ＣｅｌｅｃＰｉｍｂꎬｔ ＋ ＣｈｅａｔＨｉｍｂꎬｔ ＋ ３. ６Ｃｃａｐｍｉｍｂ

ｃａｐꎬｔ) (８)

２. ２　 约束条件

优化调度中需考虑系统的能量平衡约束和设备

运行约束ꎮ 由于需从汽轮机中抽取过热蒸汽用于供

热及碳捕集吸收剂再生ꎬ系统发电量将会显著下降ꎮ
考虑机组的电热耦合关系和汽轮机的安全运行限

制ꎬ将如图 ３ 所示的系统电热可行区域[２１] 作为运行

约束在优化调度中予以考虑ꎮ

图 ３　 燃煤机组耦合碳捕集系统电热可行区域[２１]

Ｆｉｇ. ３ Ｆｅａｓｉｂｌｅ ｅｌｅｃｔｒｉｃａｌ￣ｔｈｅｒｍａｌ ｏｐｅｒａｔｉｎｇ ｒａｎｇｅ

ｏｆ ＣＦＰＵ￣ＰＣＣ[２１]

在图 ３ 中ꎬ纵坐标为燃煤机组的发电功率ꎬ横坐
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标为机组非供电总抽汽量ꎬ由碳捕集抽汽和供热抽

汽两部分组成ꎮ 点 ＡꎬＢ 分别代表机组在无抽汽情

况下汽轮机最大连续额定负荷( Ｔｕｒｂｉｎｅ Ｍａｘｉｍｕｍ
Ｃｏｎｔｉｎｕｏｕｓ Ｒａｔｉｎｇꎬ ＴＭＣＲ)和 ３０％ 汽轮机热耗验收

(Ｔｕｒｂｉｎｅ Ｈｅａｔｉｎｇ ＡｃｃｅｐｔａｎｃｅꎬＴＨＡ) 工况下的发电

量ꎻ点 ＣꎬＤ 分别代表系统在抽汽量最大时ꎬ３０％
ＴＨＡ 和 ＴＭＣＲ 工况下对应的发电量ꎮ 上述 ４ 点围

合所得区域形成的约束如式(９)所示:
ｙ２ － ｙ３

－ ｘ３
( ｓｔｃａｐꎬｔ ＋ ｓｔｈｅａｔꎬｔ) ＋ ｙ２ － Ｐ ｔ ≤０ꎻ

ｙ３ － ｙ４

ｘ３ － ｘ４
( ｓｔｃａｐꎬｔ ＋ ｓｔｈｅａｔꎬｔ) ＋ ｙ３ －

ｙ３ － ｙ４

ｘ３ － ｘ４
ｘ３ － Ｐ ≥０ꎻ

ｙ１ － ｙ４

－ ｘ４
( ｓｔｃａｐꎬｔ ＋ ｓｔｈｅａｔꎬｔ) ＋ ｙ１ － Ｐ ｔ ≥０

ì

î

í

ï
ï
ï
ï

ï
ï
ïï (９)

燃煤机组 － 碳捕集系统的设备运行约束如式

(１０) ~式(１５)所示:
ｍｃｏａｌꎬｍｉｎ ≤ ｍｃｏａｌꎬｔ ≤ ｍｃｏａｌꎬｍａｘ (１０)
ｓｔｃａｐꎬｍｉｎ ≤ ｓｔｃａｐꎬｔ ≤ ｓｔｃａｐꎬｍａｘ (１１)
ｓｔｈｅａｔꎬｍｉｎ ≤ ｓｔｈｅａｔꎬｔ ≤ ｓｔｈｅａｔꎬｍａｘ (１２)
Ｕｍｉｎ ≤ Ｕｔ ≤ Ｕｍａｘ (１３)
Ｕ０ ＝ Ｕ２４ (１４)
ηｍｉｎ ≤ ηｔ ≤ ηｍａｘ (１５)
需指出的是ꎬＵ０ 和 Ｕ２４分别为优化调度周期开

始、结束时刻的 ＣＯ２储罐储量ꎬ为保证调度结果的可

重复性ꎬ强制要求其相等ꎮ
系统电、热、碳供需平衡约束如式 (１６) ~ 式

(１８)所示:
Ｐ ｔ ＋ Ｐ ｉｍｂꎬｔ － Ｐｃｏｍｐꎬｔ ＝ Ｌｅｌｅｃꎬｔ (１６)
Ｈｔ ＋ Ｈｉｍｂꎬｔ ＝ Ｌｈｅａｔꎬｔ (１７)
ｍｃａｐꎬｔ ＋ ｍｃａｐꎬｉｍｂꎬｔ ＝ Ｌｃａｐꎬｔ (１８)
为满足系统低碳运行要求ꎬ同时扩大优化空间ꎬ

设计如式(１９)所示的日平均碳捕集率约束:

ηｓｅｔ ≤
∑
２４

ｔ ＝ １
ｍｃａｐꎬｔ

∑
２４

ｔ ＝ １
(ｋｃａｐ􀅰ｍｃｏａｌꎬｔ)

(１９)

２. ３　 ＴＤ３ 智能优化调度框架

２. ３. １　 交互元素设计

针对以式(１５)所示为目标函数ꎬ以式(９) ~ 式

(１９)为约束条件的 ＣＦＰＵ￣ＰＣＣ 系统数学规划调度

框架ꎬ需将其转化为马尔科夫决策过程(ＭＤＰ)ꎬ以

实现基于 ＤＲＬ 算法的优化调度问题求解ꎮ ＭＤＰ
包含的智能体与环境的交互元素包括状态空间 Ｓ、
动作空间 Ａ、奖励函数 Ｒ 和状态转移概率 Ｐ[２２]ꎮ
其中ꎬＳ 包含智能体感知的环境信息ꎬ反映系统运

行状态ꎻＡ 包含可供智能体执行的调度动作ꎬ直接影

响优化目标达成ꎻＲ 用于量化环境对动作的反馈评

估ꎬ内嵌目标函数、约束条件ꎬ建立从算法到优化目

标的桥梁ꎻＰ 表征环境在动作执行后转移到下一状

态的概率ꎬ反映不确定性因素ꎬ由环境内在特性

决定ꎮ
本文设计如下动作、状态和奖励函数实现燃煤

机组 －碳捕集系统的优化调度:
(１) 状态空间 Ｓꎮ 状态的选取需全面反映系统

运行状况ꎬ且应与决策变量有直接关联ꎮ 通常将负

荷指令纳入 Ｓꎬ而由于各优化时刻下负荷指令本身

数值变化范围大、分布存在不确定因素ꎬ将导致 Ｓ 具

有高维、变化剧烈特征ꎬ因而会对智能体特征提取造

成不利影响ꎬ寻优能力降低ꎮ 鉴于此ꎬ本文将存在较

强不确定性的电、碳负荷指令拆分为“预测基准”和
“修正偏差”两个维度ꎬ前者为负荷指令预测值ꎬ反
映其变化的总体趋势ꎻ后者为日内实际指令与日前

预测值间的偏差ꎬ表征实际负荷指令的不确定特征ꎬ
以此在训练过程中引导智能体将复杂状态分解ꎬ提
升不确定因素下的调度鲁棒性ꎮ 因此ꎬ设计如式

(２０)所示的状态空间 Ｓ:
Ｓ ＝ [ ｔꎬＬｐｒｅ

ｅｌｅｃꎬｔꎬＬｂｉａｓ
ｅｌｅｃꎬｔꎬＬｐｒｅ

ｃａｐꎬｔꎬＬｂｉａｓ
ｃａｐꎬｔꎬＬｈｅａｔꎬｔꎬＵｔ] (２０)

(２) 动作空间 Ａꎮ 选取 ＣＦＰＵ￣ＰＣＣ 系统优化调

度的决策变量作为智能体动作ꎬ包括 ｔ 时刻给煤量、
碳捕集抽汽流量及供热抽汽流量ꎬ组成如式(２１)所
示的动作空间 Ａ:

Ａ ＝ [ｍｃｏａｌꎬｔꎬｓｔｃａｐꎬｔꎬｓｔｈｅａｔꎬｔ] (２１)
(３)奖励函数 Ｒꎮ 综合考虑调度目标和约束条

件ꎬ构造如式(２２)所示的奖励函数:
ｒｔ ＝ － ｋｏｐｅＦａｌｌꎬｔ － ｋｓｔｅｐ

ｖｉｏ ｒｓｔｅｐｖｉｏꎬｔ － ｋｅｐｉ
ｖｉｏ ｒｅｐｉｖｉｏꎬｔ (２２)

需指出的是ꎬｋｏｐｅ为系统运行性能的权重系数ꎬ

ｋｓｔｅｐ
ｖｉｏ 和 ｋｅｐｉ

ｖｉｏ分别为每步(１ ｈ)及每回合(２４ ｈ)约束越

界的惩罚系数ꎮ
在每个优化时刻ꎬ若智能体动作执行结果违反

约束式(９) ~式(１８)ꎬ向奖励函数中添加如式(２３)
所示的步约束越界惩罚:
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ｒｓｔｅｐｖｉｏꎬｔ ＝ α (２３)
　 　 其中ꎬα 的取值根据智能体训练收敛情况进行

调试ꎮ 若智能体动作执行结果未违反式(９) ~ 式

(１８)中的任一约束ꎬ则有 ｒｓｔｅｐｖｉｏꎬｔ ＝ ０ꎮ
在每个优化周期末时刻ꎬ若智能体动作执行结

果违反日平均碳捕集率约束式(１９)ꎬ向奖励函数中

添加如式(２４)所示的回合约束越界惩罚:

ｒｅｐｉｖｉｏꎬｔ ＝ ηｓｅｔ －
∑
２４

ｔ ＝ １
ｍｃａｐꎬｔ

∑
２４

ｔ ＝ １
(ｋＣＯ２

􀅰ｍｃｏａｌꎬｔ)
(２４)

若智能体动作执行结果未违反约束式(１９)ꎬ则
有 ｒｅｐｉｖｉｏꎬｔ ＝ ０ꎮ
２. ３. ２　 ＴＤ３ 智能体训练流程

通过大量回合的决策 －状态感知 －奖励 －反馈

的闭环迭代训练ꎬＤＲＬ 算法将得到解决上述复杂

ＭＤＰ 问题的最优策略ꎬ以实现对目标调度优化问题

的求解ꎬ本文采用 ＴＤ３ 算法执行该训练过程ꎮ ＴＤ３
是一种基于演员 －评论家(Ａｃｔｏｒ￣Ｃｒｉｔｉｃ)框架构建的

用以解决连续动作空间中复杂决策问题的无模型深

度强化学习算法ꎮ 其中ꎬ演员负责学习参数化的策

略函数ꎬ评论家通过学习状态价值函数预测特定策

略下从当前状态开始可获得的预期总回报ꎬ即预测

未来累计奖励[２３]ꎮ 该算法以深度确定性策略梯度

算法(ＤＤＰＧ)为基础ꎬ做出 ３ 点主要改进:(１) 使用

２ 套截断的评估网络(Ｃｒｉｔｉｃ)估算 Ｑ 值(动作价值)ꎬ
取较小者作为更新目标ꎬ以抑制 Ｑ 值过估计ꎻ(２)
延迟策略网络(Ａｃｔｏｒ)参数的更新频率ꎬ确保 Ｃｒｉｔｉｃ
训练充分、稳定ꎻ(３) 在目标动作中加入噪声ꎬ平滑

Ｑ 函数沿不同动作的变化ꎬ稳定 Ｃｒｉｔｉｃ 的训练波

动[２４]ꎮ 算法训练原理如图 ４ 所示ꎮ

图 ４　 ＴＤ３ 算法训练原理图

Ｆｉｇ. ４ Ｔｒａｉｎｉｎｇ ｓｃｈｅｍａｔｉｃ ｄｉａｇｒａｍ ｏｆ ＴＤ３ ａｌｇｏｒｉｔｈｍ

　 　 算法的训练流程[２５]为:

(１) 随机初始化 ２ 个评估网络的参数(θ１ꎬθ２)
和策略网络的参数(ϕ)ꎻ

(２) 初始化上述网络对应的目标网络的参数

(θ′１ꎬθ′２ꎬϕ′)ꎻ
(３) 初始化经验回放池 Ｂꎻ

(４) 执行从 ｔ ＝ １ 到 ｔ ＝ Ｔ(回合长度ꎬ即调度周

期)为周期的循环训练:
①智能体根据初始(或当前)状态 ｓ 选择动作 ａ

并加入探索噪声 ａ ~ π( ｓ) ＋ εꎬ其中 ε ~ Ｎ(０ꎬσ)ꎬ进
而得到奖励 ｒꎬ反馈至环境ꎬ得到新状态 ｓ′ꎻ

②储存上述过程中的元素( ｓꎬａꎬｒꎬｓ′)至 Ｂꎻ
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③从 Ｂ 中对过程元素( ｓꎬａꎬｒꎬｓ′)进行小批量随

机采样ꎬ计算目标动作ꎬ并加入裁剪噪声:
ａ~←πϕ′( ｓ) ＋ εꎬε ~ ｃｌｉｐ(Ｎ(０ꎬσ~ )ꎬ － ｃꎬｃ) (２５)
计算目标值:
ｙ←ｒ ＋ γ ｍｉｎｉ ＝ １ꎬ２Ｑθ′ｉ( ｓ′ꎬａ

~ ) (２６)

按梯度下降原理更新评估网络参数:
θｉ←ｍｉｎｉ ＝ １ꎬ２Ｎ － １∑(ｙ － Ｑθｉ( ｓꎬａ))

２ (２７)

当 ｔ 可被 ｄ 整除时 (延迟 ｄ 步执行策略更

新)ꎬ根据确定性策略梯度(ＤＰＧ)更新策略网络参

数 ϕ:
ÑϕＪ(ϕ) ＝ Ｎ － １∑ÑａＱθ１( ｓꎬａ) ｜ ａ ＝ πϕ( ｓ)

Ñϕπϕ( ｓ)

(２８)
更新各目标网络参数:
θ′ｉ←τθｉ ＋ (１ － τ)θ′ｉ (２９)
ϕ′←τϕ ＋ (１ － τ)ϕ′ (３０)
依据上述训练流程ꎬ在 ＭＤＰ 框架下ꎬＴＤ３ 智能

体通过感知当前时刻 ＣＦＰＵ￣ＰＣＣ 系统的状态ꎬ执行

动作ꎬ获得即时奖励ꎬ并使系统转移至新状态ꎮ 之后

将每步交互得到的[状态ꎬ动作ꎬ奖励ꎬ新状态]元组

存储于经验回放池ꎬ在后续训练中通过小批量随机

采样利用过去经验ꎬ以消除经验数据关联ꎬ进而通过

并行策略网络 /评估网络训练持续提升智能体对系

统优化调度问题的决策能力ꎮ

３　 算例分析

本节通过算例对比与分析ꎬ验证所提调度方法

的有效性和优越性ꎮ 算例分析中ꎬ作为调度优化计

算的边界条件确定性场景下(算例 １)的电、热、碳负

荷预测值如图 ５ 所示ꎮ

图 ５　 确定性调度预测负荷指令

Ｆｉｇ. ５ Ｌｏａｄ ｆｏｒｅｃａｓｔ ｃｏｍｍａｎｄｓ ｏｆ ｄｅｔｅｒｍｉｎｉｓｔｉｃ ｓｃｈｅｄｕｌｉｎｇ

　 　 不确定性场景下的(算例 ２ꎬ３)ꎬ考虑来自天气、
市场、用户等方面的短期随机性影响ꎬ假设电、碳负

荷指令存在不确定性(热负荷以季节为周期变化ꎬ
随机性较小ꎬ假设仍为确定性指令)ꎬ其预测值及偏

差(用每时刻下的箱型图表示)如图 ６ 所示ꎮ

图 ６　 不确定性调度预测负荷指令及偏差

Ｆｉｇ. ６ Ｌｏａｄ ｆｏｒｅｃａｓｔ ｃｏｍｍａｎｄｓ ａｎｄ ｄｅｖｉａｔｉｏｎｓ

ｏｆ ｕｎｃｅｒｔａｉｎ ｓｃｈｅｄｕｌｉｎｇ

此外ꎬ调度目标、约束条件中涉及的参数如表 ４
所示ꎮ ＴＤ３ 训练采用的超参数如表 ５ 所示ꎮ 表 ４
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中ꎬ煤炭价格参考自文献[２６]ꎬ为 ２０２１ 年国内动力

煤市场价ꎻ考虑电、热供应为煤电机组运行的主要任

务ꎬ均需满足用户负荷需求ꎬ故设置相同的惩罚

权重ꎮ

表 ４　 调度计算所用参数

Ｔａｂ. ４ Ｐａｒａｍｅｔｅｒｓ ｕｓｅｄ ｉｎ ｏｐｔｉｍａｌ ｓｃｈｅｄｕｌｉｎｇ ｃａｌｃｕｌａｔｉｏｎ

名称 参数

煤炭成本[２５]Ｃｃｏａｌ / (元􀅰ｔ － １) １ ５００

机组发电单位运维成本 Ｃｅｌｅｃ / (元􀅰ＭＷ － １) ４０

机组供热单位运维成本 Ｃｈｅａｔ / (元􀅰ＭＷ － １) ４０

碳捕集单位运维成本 Ｃｃａｐ / (元􀅰ｔ － １) ９. ６２

供热不足单位惩罚成本 Ｃｉｍｂ
ｈｅａｔ / (元􀅰ＭＷ － １) １ ５００

碳捕集不足单位惩罚成本 Ｃｉｍｂ
ｃａｐ / (元􀅰ｔ － １) ６０

发电不足单位惩罚成本 Ｃｉｍｂ
ｅｌｅｃ / (元􀅰ＭＷ － １) １ ５００

日平均碳捕集率最低限值 ηｓｅｔ / ％ ６０

ＣＯ２储罐储存量下限 Ｕｍｉｎ ５０

ＣＯ２储罐储存量上限 Ｕｍａｘ ２ ８００

系统运行性能权重系数 ｋｏｐｅ ０. ０００ １

步约束越限惩罚系数 ｋｓｔｅｐｖｉｏ １

步约束越限惩罚值 α １０

回合约束越限惩罚系数 ｋｅｐｉｖｉｏ １０

碳捕集率上限 ηｍｉｎ ０. ３

碳捕集率下限 ηｍａｘ ０. ９

表 ５　 ＴＤ３ 算法超参数设置

Ｔａｂ. ５ Ｈｙｐｅｒｐａｒａｍｅｔｅｒ ｓｅｔｔｉｎｇ ｆｏｒ ＴＤ３ ａｌｇｏｒｉｔｈｍ

参数 数值

策略网络学习率 ０. ００１

评估网络学习率 ０. ０００ １

折扣因子 γ ０. ９９５

经验回放池容量 ２ ０００ ０００

经验回放池采样批量大小 ５１２

目标平滑因子 ０. ００５

目标更新频率 １０

３. １　 验证 ＴＤ３ 算法处理系统非线性特性的优势

　 　 为验证 ＴＤ３ 算法在处理 ＣＦＰＵ￣ＰＣＣ 变工况运

行非线性特性上的优势设置算例 １ꎬ将本文所提

ＴＤ３ 算法与基于线性模型的混合整数线性规划

(ＭＩＬＰ)算法进行对比ꎬ在确定性场景下求解 ＣＦＰＵ￣
ＰＣＣ 系统的优化调度问题ꎮ ＭＩＬＰ 调度的目标函数、

约束设置见式(５) ~式(１９)ꎮ
两种调度方法下ꎬＣＦＰＵ￣ＰＣＣ 系统的电、热、碳

出力及碳储罐情况如图 ７ 所示ꎮ
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图 ７　 算例 １ 中燃煤机组耦合碳捕集系统调度结果

Ｆｉｇ. ７ Ｓｃｈｅｄｕｌｉｎｇ ｒｅｓｕｌｔｓ ｏｆ ＣＦＰＵ￣ＰＣＣ ｉｎ Ｅｘａｍｐｌｅ Ⅰ

　 　 由图 ７(ａ)可知ꎬ在电侧ꎬＭＩＬＰ 方法在 １:００ ~
７:００ 时段出现明显的电功率不平衡现象ꎬ引起额外

惩罚ꎮ 原因在于ꎬ在电负荷低谷时段ꎬ发电机组运行

于低负荷工况ꎬ发电效率较低ꎬ而 ＭＩＬＰ 基于额定工

况的线性模型开展优化ꎬ无法充分反映机组宽负荷

区间运行的非线性特性ꎬ过高估计了机组的发电功

率ꎬ导致机组发电量无法满足负荷需求ꎮ 而 ＴＤ３ 通

过智能体与非线性 ＤＢＮ 代理模型交互ꎬ能准确识别

机组宽工况范围内的运行状态ꎬ结合调度指令有效

调整机组出力ꎬ调度周期内不平衡功率几乎为零ꎮ
由图 ７(ｂ)和 ７(ｃ)可知ꎬ热侧和碳侧并未出现不平

衡现象ꎬ这主要是因为负荷指令波动较小ꎬ且 ＣＯ２储

罐对碳侧供需不平衡有缓冲作用ꎮ 结合图 ７(ｃ)和
７(ｄ)可知ꎬＴＤ３ 调度方法使碳捕集系统在电负荷低

谷时以高捕集率运行ꎬ在储罐中积累大量 ＣＯ２ꎬ而在

电负荷高峰时段降低捕集率ꎬ通过此种运行模式实

现碳捕集任务时移ꎬ在满足式(１９)的前提下充分利

用储罐的灵活性ꎬ以保障峰时电侧出力的充足与稳

定ꎮ 而在 ＭＩＬＰ 调度方法下ꎬ在电负荷低谷时碳捕

集率最低ꎬ依靠释放储罐中的 ＣＯ２满足用户需求ꎬ导
致电负荷高峰时ꎬＣＯ２存量无法满足碳负荷需求ꎬ捕
集率被动提高ꎬ影响了电侧顶峰出力ꎮ

ＴＤ３ 和 ＭＩＬＰ 方法下系统的经济性指标对比如

表 ６ 所示ꎮ 结合上述分析ꎬＴＤ３ 方法通过 ＤＢＮ 模型

交互实现了对发电机组宽工况运行状态的识别ꎬ相
比 ＭＩＬＰ 方法电功率不平衡惩罚降低了 ９８. ７８％ ꎮ
尽管发电量增加导致机组燃料和维护成本有所增

加ꎬＴＤ３ 调度方法下燃煤机组耦合碳捕集系统的日

运行总成本仍较 ＭＩＬＰ 方法降低了 ０. ６６％ ꎮ

表 ６　 算例 １ 经济性指标对比

Ｔａｂ. ６ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｅｃｏｎｏｍｉｃ ｉｎｄｉｃａｔｏｒｓ ｉｎ Ｅｘａｍｐｌｅ Ⅰ

费用明细 / 万元 确定性 ＴＤ３ 确定性 ＭＩＬＰ

燃料成本 １ １１４. ８０ １ ０７７. ２０

设备运维成本 ７２. ７１ ７０. ４１

出力不平衡惩罚 ０. ５９ ４８. ３８

日运行总成本 １ １８８. １０ １ １９５. ９９

综上所述ꎬＴＤ３ 算法通过智能体与 ＤＢＮ 代理模

型的交互学习ꎬ可在确定性场景中深入挖掘系统电、
热、碳耦合非线性特性并形成宽工况运行下的自适

应策略ꎬ在满足热侧需求的同时充分发挥碳侧灵活

性ꎬ提高电侧负荷跟踪性能ꎬ实现系统协同运行优

化ꎮ 需要注意的是ꎬ尽管 ＭＩＬＰ 可以获得线性模型

下的全局最优解ꎬ但由于线性模型难以反映机组变

工况运行的非线性特征ꎬ调度结果存在精度不足

问题ꎮ

３. ２　 验证改进 ＴＤ３ 算法处理不确定性的优势

　 　 为验证本文提出的不确定负荷指令分解策略在

处理负荷不确定性上的优势设置算例 ２ꎬ将常规

ＴＤ３ 算法与本文所提改进 ＴＤ３ 算法进行对比ꎮ 将

图 ６ 所示的电、碳负荷预测不确定场景作为智能体

离线训练场景ꎬ选取图 ５ 和图 ６ 中折线代表的电、碳
负荷数据分别作为验证场景中的实际和预测负荷指
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令ꎬ以检验智能体对 ＣＦＰＵ￣ＰＣＣ 系统负荷不确定性

的处理效果ꎮ
两种方法下系统电功率日不平衡分布对比如

图 ８所示ꎮ 由图 ８ 可知ꎬ常规 ＴＤ３ 方法下ꎬ机组在

８:００ ~ １９:００ 时段供电不足ꎬ导致较多不平衡惩罚ꎮ
该现象是由于在电负荷上升及高峰期的不确定性较

大ꎬ而常规 ＴＤ３ 方法在状态中仅考虑电负荷指令的

实际值ꎬ难以充分学习掌握各时刻指令的不确定性

特征ꎬ预测效果不佳ꎮ 改进 ＴＤ３ 方法通过将实际电

负荷指令分解为预测指令与预测偏差之和ꎬ可深入

学习各时刻指令的预测 － 实际偏差特征ꎬ使发电机

组出力在负荷指令变化趋势的基础上对预测偏差进

行修正ꎬ有效降低了供电不平衡惩罚ꎮ

图 ８　 算例 ２ 两方法电功率不平衡情况对比

Ｆｉｇ. ８ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｅｌｅｃｔｒｉｃａｌ ｐｏｗｅｒ ｉｍｂａｌａｎｃｅｓ

ｂｅｔｗｅｅｎ ｔｈｅ ｔｗｏ ｍｅｔｈｏｄｓ ｉｎ Ｅｘａｍｐｌｅ Ⅱ

算例 ２ 经济指标对比如表 ７ 所示ꎮ 由表 ７ 可

知ꎬ改进 ＴＤ３ 调度的不平衡惩罚相比常规 ＴＤ３ 降低

了 ３７. ２％ ꎬ日运行总成本降低了 ０. ５２％ ꎬ验证了所

提策略改进 ＴＤ３ 在 ＣＦＰＵ￣ＰＣＣ 系统负荷不确定场

景调度问题求解中的优势ꎮ

表 ７　 算例 ２ 经济性指标对比

Ｔａｂ. ７ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｅｃｏｎｏｍｉｃ ｉｎｄｉｃａｔｏｒｓ ｉｎ Ｅｘａｍｐｌｅ Ⅱ

费用明细 / 万元 改进不确定 ＴＤ３ 常规不确定 ＴＤ３

燃料成本 １ ０７９. ３ １ ０８２. ７０

出力设备运维成本 ７０. ４ ７０. ６７

出力不平衡惩罚 ３. ９ ６. ２１

日运行总成本 １ １５３. ６ １ １５９. ５８

３. ３　 验证 ＴＤ３ 相比其他 ＤＲＬ 算法处理不确定调度

问题的优势

　 　 算例 ３ 应用 ＴＤ３ꎬＤＤＰＧ 和 ＳＡＣ ３ 种 ＤＲＬ 算法

求解 ３. ２ 节中的 ＣＦＰＵ￣ＰＣＣ 系统不确定优化调度问

题ꎬ以验证 ＴＤ３ 算法处理该问题的优势ꎮ 为保证对

比公平ꎬ３ 种算法共有的训练超参数、网络深度和训

练环境设为一致ꎬ且均采用本文所提不确定负荷指

令分解策略ꎮ 需指出的是ꎬ由于非线性优化无法保

证全局最优ꎬ尽管 ３ 种算法采用相同的参数设置ꎬ取
得的调度结果仍存在差异ꎮ

表 ８ 总结了各方法的经济性指标ꎮ 由表 ８ 可

知ꎬ本文所提策略改进 ＴＤ３ 调度下ꎬ系统各项成本

均最低ꎬ其不平衡惩罚相比改进 ＳＡＣ 方法降低了

８７. ２５％ ꎬ相比改进 ＤＤＰＧ 方法降低了 ９０. ２３％ ꎬ总
成本相比上述算法分别降低了 ４. ４３％ 和 ９. １２％ ꎮ
这说明通过引入双评估网络、延迟策略更新、动作平

滑机制ꎬＴＤ３ 算法在处理 ＣＦＰＵ￣ＰＣＣ 系统调度问题

时ꎬ相对其他 ＤＲＬ 算法能探索得到更优的调度策

略ꎬ获得更好的运行经济性和可靠性ꎮ

表 ８　 算例 ３ 经济性指标对比

Ｔａｂ. ８ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｅｃｏｎｏｍｉｃ ｉｎｄｉｃａｔｏｒｓ ｉｎ Ｅｘａｍｐｌｅ Ⅲ

费用明细 / 万元 改进 ＴＤ３ 改进 ＳＡＣ 改进 ＤＤＰＧ

燃料成本 １ ０７９. ３ １ １０４. ２ １ １５４. ４

设备运维成本 ７０. ４ ７２. ３ ７５. １

出力不平衡惩罚 ３. ９ ３０. ６ ３９. ９

日运行总成本 １ １５３. ６ １ ２０７. １ １ ２６９. ４

４　 结　 论

本文提出 １ 种基于 ＴＤ３ 算法的燃煤机组耦合

碳捕集系统深度强化学习调度框架ꎬ结合负荷需求

对机组电、热、碳指令进行优化分配ꎬ实现系统整体

的经济、低碳、灵活运行ꎮ 主要结论如下:
(１) ＴＤ３ 调度方法的数据驱动特点ꎬ使其可以

有效处理机组宽工况运行下的非线性问题ꎮ 相比常

规基于线性模型开展的 ＭＩＬＰ 调度方法ꎬ功率不平

衡惩罚可降低 ９８. ７８％ ꎬ从而使得系统日运行总成

本降低 ０. ６６％ ꎻ
(２) 所提复杂负荷状态分解策略有效提高了负

荷指令不确定条件下智能体的学习能力ꎬ相比常规

ＴＤ３ 调度ꎬ功率不平衡惩罚降低 ３７. ２％ ꎬ系统日运

行总成本降低 ０. ５２％ ꎻ
(３) 相比 ＳＡＣ、ＤＤＰＧ 等其他深度强化学习方
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法ꎬＴＤ３ 算法能够探索得到更经济、可靠的调度策

略ꎬ使系统总运行成本分别降低 ４. ４３％和 ９. １２％ ꎮ
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