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Abstract: Equipping with carbon capture system for coal-fired power units ( CFPU) is an important
means of achieving low-carbon retrofits. CFPU integrated with post-combustion carbon capture systems
(CFPU-PCC) contain complex electrical, thermal and carbon coupling relationships, thus requiring opti-

mal scheduling to reasonably allocate system output to ensure economical, low-carbon and flexible opera-
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tion. For the strong random fluctuations in electricity and carbon loads, and the nonlinear characteristics
of wide operating conditions for power units, the conventional linear model-based scheduling methods are
ineffective. To address this, a data-driven intelligent scheduling method was proposed for CFPU-PCC
based on twin delayed deep deterministic policy gradient algorithm (TD3) , an uncertainty load command
decomposition strategy was adopted to improve optimization capability of agents under uncertain situa-
tions. An optimized scheduling objective function consisting of coal consumption cost of power units, op-
eration and maintenance cost, and load deviation penalty was designed. A mathematical programming
scheduling frame was constructed, including scheduling constraints of equipment operation, energy bal-
ance and daily average carbon capture rate. And this conventional optimal scheduling frame was conver-
ted into a Markov decision process. Through offline interacting training between the agent and simulation
model, the optimal scheduling strategy under uncertain conditions was adaptively learned. Simulation re-
sults indicate that in a 1 000 MW ultra-supercritical combined heat and power ( CHP) unit coupled with
a monoethanolamine absorption carbon capture system, the proposed method reduces total daily operating
cost by 0. 66% and 0.52% respectively, compared to mixed-integer linear programming ( MILP) algo-
rithm based on linear models and conventional uncertain TD3 algorithm.

Key words: coal-fired power generation; carbon capture; flexible operation; optimal scheduling; deep

reinforcement learning
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Tab. 1 Main operating parameters of the system under

typical working conditions
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Fig.2 Model fitting accuracy validation results
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Tab. 2 Comparison of fitting accuracy indicators of

different modeling methods
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different modeling methods
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Fig.5 Load forecast commands of deterministic scheduling
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Fig. 8 Comparison of electrical power imbalances

between the two methods in Example I
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Tab.7 Comparison of economic indicators in Example [l
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