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Abstract: In order to reveal the unsteady flow characteristics and aerodynamic noise generation mecha-
nisms of a low-pressure turbine stage under design condition and quantify the turbulent kinetic energy and
sound energy proportions of various phenomena, a methodology for evaluating the aerodynamic noise
source energy of a low pressure turbine stage based on proper orthogonal decomposition was proposed.
The large eddy simulation was conducted on the low pressure turbine stage, and the proper orthogonal de-
composition was carried out on the spatio-temporal matrixes consisting of flow field snapshots. The decom-
posed velocity and pressure modes revealed the aerodynamic structures that caused turbulence fluctuations
and aerodynamic noise respectively, wherein the energies of the turbulence fluctuation sources and the
aerodynamic noise sources were characterized by the sum of the eigenvalues of the relevant modes. The
results show that the potential field influence and wake periodic migration caused by the rotor-stator inter-

action effect are the largest sources of turbulence fluctuation and aerodynamic noise within turbine stage,
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with the turbulent kinetic energy accounting for 23.0% and the sound energy accounting for 39.0% . The

von Karman vortex sireet and wave packet structure caused by the stator trailing edge vortex shedding

process are the second largest sources of turbulence fluctuation and aerodynamic noise within the turbine

stage, with the turbulent kinetic energy accounting for 3. 9% and the sound energy accounting for

20.9% . The energy generated during the rotor tip vortex shedding process is relatively low, with the tur-

bulent kinetic energy accounting for 3. 7% and the sound energy accounting for 5.6%.

Key words: low pressure turbine; large eddy simulation; proper orthogonal decomposition; rotor-stator

interaction ; aerodynamic noise
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Tab. 1 Comparison of aerodynamic performance

parameters between original model and modified model
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Fig. 1 Geometric model of flow passage
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Tab. 2 Design working condition parameters

of turbine stage
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Fig. 2 Computational meshes of turbine stage
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