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Abstract: For the multi-parameter optimization problem of a serrated trench cooling structure, a method
combining conditional generative adversarial networks ( CGAN) and sparrow search algorithm (SSA) was
proposed. Selecting serration angle, trench height and blowing ratio as design variables, within the pa-
rameter ranges of serration angle from 22.5° to 60°, trench height from 0.012 7 to 9.525 mm and blo-
wing ratio from 0.5 to 2.0, the CGAN model was used for rapid prediction of the film cooling effective-
ness. The results show that the relative error of the film cooling effectiveness predicted by the CGAN
model is less than 5.5% . Structural optimization is then performed using the SSA algorithm, which yields
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the optimal design parameters including serration angle of 42.562°, trench height of 4. 118 mm and blo-

wing ratio of 2.0. The optimized area-averaged cooling effectiveness reaches 65.6% ,

crease compared to the original conditions.

with a 20.3% in-
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Fig. 2 Geometry model for numerical calculation
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Fig. 5 Turbulence model validation
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Fig. 6 Parameter distribution statistics chart
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Fig. 15 Standard deviation distribution chart
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