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基于 ＣＧＡＮ￣ＳＳＡ 的涡轮叶片锯齿槽道冷却效率
预测与结构参数优化
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摘　 要:针对锯齿状槽道冷却结构的多参数优化问题ꎬ提出了一种基于条件生成对抗网络(ＣＧＡＮ)与麻雀搜索算法

(ＳＳＡ)相结合的方法ꎮ 选取锯齿角度、槽道高度和吹风比作为设计变量ꎬ在锯齿角度为 ２２. ５° ~ ６０°、槽道高度为

０􀆰 ０１２７ ~ ９. ５２５ ｍｍ、吹风比为 ０. ５ ~ ２. ０ 的参数范围内ꎬ利用 ＣＧＡＮ 模型实现气膜冷却效率的快速预测ꎮ 结果表

明:各工况下ꎬＣＧＡＮ 模型预测的气膜冷却效率相对误差均小于 ５. ５％ ꎻ通过 ＳＳＡ 算法进行结构优化ꎬ得到了最优设

计参数(锯齿角度 ４２. ５６２°、槽道高度 ４. １１８ ｍｍ、吹风比 ２. ０)ꎬ优化后的面积平均冷却效率达到 ６５. ６％ ꎬ较原始工

况提高 ２０. ３％ ꎮ
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引　 言

随着航空发动机和燃气轮机涡轮入口温度持续

提升ꎬ叶片等高温部件面临严峻的热负荷挑战ꎮ 气

膜冷却技术凭借其在叶片表面形成隔热膜的能力ꎬ
成为关键的热防护手段[１]ꎮ

为进一步提升气膜冷却效率ꎬ研究者不断探索

冷却结构的创新设计及其对流动掺混与气膜附着性

的影响ꎮ 其中ꎬ槽道结构因其能有效引导冷却气流、
增强剪切扰动ꎬ逐渐成为研究热点[２]ꎮ Ｂｕｎｋｅｒ[３] 对
横向槽道内的离散膜孔进行了系统研究ꎬ指出该结

构在高吹风比条件下依然具有良好的附着性ꎮ Ｌｕ
等人[４]利用红外热成像对不同尺寸槽道性能进行

评估ꎬ发现当槽道深度为气膜孔直径 Ｄ 的 ０. ７５ 倍

时槽道的冷却效果最优ꎮ Ｗａｎｇ 和 Ｌｕ 等人[５ － ６]进一

步分析了腔体混合与横向扩散对冷却均匀性的影

响ꎮ 此外ꎬＯｇｕｎｔａｄｅ 等人[７] 研究表明ꎬ相较传统孔

型ꎬ槽道结构在制造成本、气膜覆盖效果与涂层兼容

性方面具有更明显的优势ꎮ
随着机器学习技术的快速发展ꎬ数据驱动建模

方法在流体力学和传热问题中展现出强大的非线性

拟合能力ꎬ为传统数值模拟方法在效率与精度上的

提升提供了新路径ꎮ Ｔｒａｃｅｙ 和 Ｌｉｎｇ 等人[８ － ９]分别利

用浅层神经网络与张量基神经网络(ＴＢＮＮ)修正湍流

模型ꎬ提高了雷诺平均纳维 － 斯托克斯方程(ＲＡＮＳ)
在气膜冷却模拟中的适用性ꎮ Ｍｉｌａｎｉ 等人[１０] 采用

随机森林方法预测气膜冷却流动相关的换热行为ꎬ
取得了较高的精度ꎮ Ｍｉｌａｎｉ 等人[１１] 引入机器学习ꎬ
将 ＲＡＮＳ 结果与实验数据相结合ꎬ显著增强了模型

稳定性ꎮ 为进一步建立高效代理模型ꎬＭａ 和 Ｙａｎｇ
等人[１２ － １３]分别基于 Ｕ￣Ｎｅｔ 结构和神经网络映射方

法预测气膜冷却效率ꎮ Ｗａｎｇ 等人[１４]采用反卷积神

经网络(Ｄｅｃｏｎｖ ＮＮ)预测气膜冷却效果ꎮ 近年来ꎬ
Ｗａｎｇ 和 Ｌｉ 等人[１５ － １６] 率先将条件生成对抗网络

(ＣＧＡＮ)引入冷却结构建模ꎬ构建了从设计参数到

温度场的直接映射模型ꎬ并结合优化算法实现了冷

却结构的智能设计与性能提升ꎮ

上述关于气膜冷却性能的研究多聚焦于特定几

何结构下的效率变化分析ꎬ尚缺乏能兼顾复杂参数

耦合建模与优化设计的一体化解决方案ꎮ 本文针对

锯齿槽道结构几何参数与流场响应的非线性关系ꎬ
选取锯齿角度、槽道高度及吹风比作为设计变量ꎬ基
于 ＣＦＤ 方法构建数据集ꎬ结合条件生成对抗网络

(ＣＧＡＮ)实现冷却效率预测ꎬ并引入 ＳＳＡ 优化结构

参数ꎬ开展了基于数据驱动的锯齿状槽道冷却结构

多参数耦合研究与优化ꎬ旨在建立一种能够替代高

耗时数值模拟的高精度快速预测模型ꎬ并通过 ＳＳＡ
算法挖掘最优几何设计方案ꎬ以实现气膜冷却效率

的提升ꎮ

１　 数据模拟

１. １　 计算模型

本文采用锯齿状槽道结构模型ꎬ气膜孔直径 Ｄ
为 １２. ７０ ｍｍꎬ孔倾斜角 β 为 ３０°ꎬ孔长度 Ｌ 为 ５７. １５
ｍｍꎬ如图 １ 所示ꎮ 几何模型通过设计建模软件

(ＤｅｓｉｇｎＭｏｄｅｌｅｒ)进行参数化建模ꎬ主要结构参数包

括锯齿角度 α 和槽道高度 Ｈꎮ

图 １　 槽道结构示意图

Ｆｉｇ. １ Ｓｃｈｅｍａｔｉｃ ｄｉａｇｒａｍｓ ｏｆ ｔｒｅｎｃｈ ｓｔｒｕｃｔｕｒｅ

针对锯齿槽道结构对壁面冷却效果的改善机

制ꎬ本文重点分析下游位置无量纲距离 Ｘ / Ｄ ＝ ４４ 区

域ꎮ 为了确保计算效率与预测精度ꎬ需合理设定几
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何参数范围ꎬ为确保计算成本与预测精度ꎬ并兼顾工

程加工的可行性ꎬ在参考 Ｑｉ 等人[１７]的研究后ꎬ设计

变量的取值范围设定为:锯齿角度 α 在 ２２. ５° ~
６０°ꎬ槽道高度 Ｈ 介于 ０. ０１２ ７ ~ ９. ５２５ ｍｍꎮ
１. ２　 参数定义

针对槽道几何结构与工况变量对气膜冷却效率

的复杂影响关系ꎬ锯齿角度 α、槽道高度 Ｈ 和吹风比

Ｍ 被选作模型的输入变量ꎬ用于表征结构与工况对

冷却效率的影响ꎮ 其中ꎬα 与 Ｈ 为几何参数ꎬ显著影

响冷却气流的引导路径及膜层附着范围ꎻＭ 表征冷

气对主流的动量对抗能力ꎬ是决定气膜附着性和覆

盖范围的关键因素ꎮ 研究对象为绝热气膜冷却效率

ηꎬ其计算式定义为:

η ＝
Ｔｍ － Ｔａｗ

Ｔｍ － Ｔｃ
(１)

式中:Ｔａｗ、Ｔｍ—绝热壁面温度和主流温度ꎻＴｃ—冷气

温度ꎮ
吹风比 Ｍ 用于量化冷气流与主气流之间的动

量比ꎬ其计算式为:

Ｍ ＝
ρｃＵｃ

ρｍＵｍ
(２)

式中: ρｃ、Ｕｃ—冷却气流的密度和速度ꎻρｍ、Ｕｍ—主

流的密度和速度ꎮ
１. ３　 边界条件

图 ２ 为数值计算的几何模型ꎬ主流采用理想气

体ꎬ入口速度为 １３. ８ ｍ / ｓꎬ温度为 ３２１ Ｋꎬ湍流强

度为５％ ꎻ主流通道出口设为压力出口ꎬ静压为

１０１ ３２５ Ｐａꎻ冷却剂为纯空气ꎬ温度为 ２９６ Ｋꎬ湍流强

度为 ５％ ꎬ速度方向沿气膜孔轴线ꎬ速度大小由吹风

比和主流速度决定ꎮ 参考文献[１７]ꎬ选取吹风比为

０. ５ꎬ１. ０ꎬ１. ５ 和 ２􀆰 ０ꎬ主流通道两侧采用周期性边界

条件ꎬ其余所有壁面均为绝热壁面ꎮ

图 ２　 数值计算的几何模型

Ｆｉｇ. ２ Ｇｅｏｍｅｔｒｙ ｍｏｄｅｌ ｆｏｒ ｎｕｍｅｒｉｃａｌ ｃａｌｃｕｌａｔｉｏｎ

１. ４　 网格独立性验证

首先ꎬ针对基准几何构型生成了由 ７５６. ３ 万个四

面体非结构单元组成的计算网格ꎬ如图 ３ 所示ꎮ 为精

确捕捉近壁区的流动特性并满足 Ｒｅａｌｉｚａｂｌｅ ｋ － ε
湍流模型的要求ꎬ对壁面边界层网格进行细化ꎬ设置

首层网格高度为 １ × １０ － ５ꎬ并采用 １. ２ 的增长率ꎬ确
保了壁面 ｙ ＋ 值小于 １ꎮ

图 ３　 锯齿状槽道结构模型计算域网格

Ｆｉｇ. ３ Ｍｅｓｈ ｏｆ ｃｏｍｐｕｔａｔｉｏｎａｌ ｄｏｍａｉｎ ｆｏｒ ｓｅｒｒａｔｅｄ

ｔｒｅｎｃｈ ｓｔｒｕｃｔｕｒｅ ｍｏｄｅｌ

为了验证网格独立性ꎬ分别生成约 ２３７ 万 ~
１ ２７９ 万个单元的 ６ 组网格ꎬ并在吹风比 Ｍ ＝ １. ０ 条

件下对面积平均冷却效率 ηａ进行对比ꎬ结果如图 ４
所示ꎮ

图 ４　 网格无关性验证

Ｆｉｇ. ４ Ｍｅｓｈ ｉｎｄｅｐｅｎｄｅｎｃｅ ｖｅｒｉｆｉｃａｔｉｏｎ

实验结果表明ꎬηａ在网格数达到 ７５６ 万后趋于稳

定ꎬ继续加密所带来的变化小于 １％ꎮ 综合精度与计

算成本ꎬ后续模拟统一采用 ７５６. ３ 万单元的网格ꎮ 所

有参数化模型的网格均通过工作台(Ｗｏｒｋｂｅｎｃｈ)自
动生成ꎬ以确保设置一致性ꎮ

１. ５　 湍流建模与验证

利用 Ａｎｓｙｓ Ｆｌｕｅｎｔ 软件进行 ＣＦＤ 仿真ꎬ基于雷
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诺平均纳维 － 斯托克斯(ＲＡＮＳ)方程求解ꎬ流项离

散格式采用二阶迎风格式ꎬ残差收敛标准设置为

１０ － ５ꎬ收敛后继续迭代 １ ０００ 步确保结果稳定ꎮ 为

了验证数值方法的有效性ꎬ参考文献[３]的红外热

成像实验ꎬ在 Ｍ ＝ １. ０、Ｄ ＝ １２. ７０ ｍｍ、Ｈ ＝ ０. ７５Ｄ 条

件下ꎬ构建相同几何结构模型与边界配置进行对比ꎬ
实验结果如图 ５ 所示ꎬＲｅａｌｉｚａｂｌｅ ｋ － ε 模型在多数

区域能较好地匹配实验数据ꎬ因此ꎬ可作为本文的统

一湍流模型ꎮ

图 ５　 湍流模型验证

Ｆｉｇ. ５ Ｔｕｒｂｕｌｅｎｃｅ ｍｏｄｅｌ ｖａｌｉｄａｔｉｏｎ

１. ６　 数据处理

通过拉丁超立方采样(ＬＨＳ)生成 ６６０ 组参数样

本ꎬ其中ꎬ训练 ５７０ 组ꎬ测试 ９０ 组ꎬ变量范围参考 Ｑｉ
等人[１７]的研究ꎬ以保证采样空间合理ꎮ 图 ６ 为输入

参数的分布统计图ꎬ从图中可以看出ꎬ采样结果覆盖

均匀ꎮ

图 ６　 参数分布统计图

Ｆｉｇ. ６ Ｐａｒａｍｅｔｅｒ ｄｉｓｔｒｉｂｕｔｉｏｎ ｓｔａｔｉｓｔｉｃｓ ｃｈａｒｔ

为了消除参数间量纲差异并加快模型收敛ꎬ对

所有输入变量进行归一化处理ꎬ采用最小 － 最大归

一化(Ｍｉｎ￣Ｍａｘ Ｓｃａｌｉｎｇ)方法ꎬ将参数映射至[０ꎬ１]
区间ꎬ归一化公式如下:

ｘｌ ＝
ｘ′ｌ － ｍｉｎｌ

ｍａｘｌ － ｍｉｎｌ
(３)

式中: ｘ′ｌ—原始参数向量中的第 ｌ 个分量ꎻｍａｘｌ、
ｍｉｎｌ—对应元素取值的上下限ꎮ

归一化后ꎬ原始参数向量ｘ′被映射至[０ꎬ１]区

间ꎬ转化为无量纲的特征向量ｘｉꎮ

２　 冷却效率预测模型

２. １　 生成对抗网络原理与结构

生成对抗网络(Ｇｅｎｅｒａｔｉｖｅ Ａｄｖｅｒｓａｒｉａｌ Ｎｅｔｗｏｒｋꎬ
ＧＡＮ)由 Ｇｏｏｄｆｅｌｌｏｗ 等人[１８] 提出ꎬ其基本结构由生

成器和判别器组成ꎬ如图 ７ 所示ꎮ

图 ７　 原始生成对抗网络

Ｆｉｇ. ７ Ｏｒｉｇｉｎａｌ ｇｅｎｅｒａｔｉｖｅ ａｄｖｅｒｓａｒｉａｌ ｎｅｔｗｏｒｋ

生成器用于学习数据分布并生成逼真样本ꎬ判
别器则负责区分样本的真伪ꎮ 生成器与判别器在对

抗训练过程中不断迭代优化ꎬ最终使生成样本在分

布特性上难以与真实数据区分ꎮ ＧＡＮ 原始目标函

数可表示为:
ｍｉｎ

Ｇ
ｍａｘ

Ｄ
Ｖ(ＤꎬＧ) ＝ Ｅｘ ~ ｐｄａｔａ(ｘ)[ｌｏｇＤ(ｘ)] ＋

Ｅｚ ~ Ｐｚ( ｚ)[ｌｏｇ(１ － Ｄ(Ｇ( ｚ)))] (４)
式中:ｘ—真实数据ꎻ ｚ—先验分布中采样的噪声向

量ꎻＰｄａｔａ(ｘ)—真实数据分布ꎻＰｚ( ｚ)—噪声的先验分

布ꎻＧ( ｚ)—生成器从噪声 ｚ 生成的数据ꎻＤ( ｘ)—判

断数据 ｘ 为真实的概率ꎻ Ｖ ( Ｄꎬ Ｇ)—损失函数ꎻ
Ｅｘ ~ ｐｄａｔａ(ｘ)—判别器对真实数据的期望值ꎻＥｚ ~ Ｐｚ( ｚ)—噪

声 ｚ 的采样并计算期望值ꎮ
由于原始 ＧＡＮ 不具备对输入的显式控制能力ꎬ

难以满足冷却效率分布随设计参数变化的建模需

􀅰２３􀅰



　 第 ２ 期 刘金江ꎬ等:基于 ＣＧＡＮ￣ＳＳＡ 的涡轮叶片锯齿槽道冷却效率预测与结构参数优化

求ꎬ因此引入条件机制以实现可控生成ꎮ
２. ２　 条件生成对抗网络原理与结构

为了弥补传统 ＧＡＮ 难以根据输入参数定向生

成的不足ꎬＭｉｒｚａ 等人[１９]于 ２０１４ 年提出了条件生成

对抗网络(ＣＧＡＮ)ꎬ如图 ８ 所示ꎮ

图 ８　 条件生成对抗网络

Ｆｉｇ. ８ Ｃｏｎｄｉｔｉｏｎａｌ ｇｅｎｅｒａｔｉｖｅ ａｄｖｅｒｓａｒｉａｌ ｎｅｔｗｏｒｋ

　 　 通过引入条件向量 ｙꎬ将其同时输入生成器和

判别器ꎬ从而实现从 Ｇ( ｚꎬｙ)→ｘ 的有条件生成ꎮ 通

过引入条件设定ꎬ模型对输入参数的响应能力得以

增强ꎬ从而能够生成与特定设计条件相匹配的输出ꎬ
适用于气膜冷却效率预测任务ꎮ ＣＧＡＮ 目标函数可

以表示为:
ｍｉｎ

Ｇ
ｍａｘ

Ｄ
Ｖ(ＤꎬＧ) ＝ Ｅｘ ~ ｐｄａｔａ(ｘ)[ｌｏｇＤ(ｘ ｜ ｙ)] ＋

Ｅｚ ~ Ｐｚ( ｚ)[ｌｏｇ(１ － Ｄ(Ｇ( ｚ ｜ ｙ)))] (５)

２. ３　 生成器网络结构设计

生成器(ＧｅｎｅｒａｔｏｒꎬＧ)采用卷积神经网络架构ꎬ
主要通过结合三维设计参数、原始图像和掩码图像ꎬ
生成对应的三通道冷却效率分布图ꎬ如图 ９ 所示ꎮ
生成器结构采用改进的 Ｕ￣Ｎｅｔ 架构ꎬ并在各阶段

广泛集成残差块(Ｒｅｓｉｄｕａｌ Ｂｌｏｃｋ)与通道注意力机

制(ＳＥ Ｂｌｏｃｋ)ꎬ以增强特征提取能力和空间表达

能力ꎮ

图 ９　 网络结构

Ｆｉｇ. ９ Ｎｅｔｗｏｒｋ ａｒｃｈｉｔｅｃｔｕｒｅ

　 　 为了实现设计参数、原始图像与掩码图像到冷

却效率图之间的有效映射ꎬ生成器网络采用了融合

多路径编码器与对称解码结构的架构设计ꎮ 锯齿角

度、槽道高度和吹风比 ３ 个设计参数拼接后经全连

接层映射为高维张量[Ｎꎬ５１２ꎬ１６ꎬ１６]ꎬ用于特征融

合ꎮ 图像编码器以三通道图像为输入ꎬ经过三层下
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采样与残差块和 ＳＥ 模块提取多尺度特征ꎻ掩码编

码器处理单通道掩码图像ꎬ经过四层下采样及残差

和 ＳＥ 模块ꎬ输出特征图经插值调整为[Ｎꎬ５１２ꎬ６４ꎬ
６４]ꎬ并通过可学习权重调节其影响ꎮ

图像编码器、掩码编码器与参数嵌入模块提取的

特征在通道维度拼接为融合张量[Ｎꎬ１５３６ꎬ６４ꎬ６４]ꎬ
输入至对称解码器ꎮ 解码器含 ３ 层转置卷积ꎬ逐步

上采样至 ２５６ × ２５６ 和 ５１２ × ５１２ꎬ并结合跳跃连接

引入浅层高分辨率特征ꎬ以增强重建质量ꎮ 最终输

出 １２８ 通道特征图ꎬ经过 ３ × ３ 卷积(Ｃｏｎｖ)与 Ｓｉｇ￣

ｍｏｉｄ 激活函数进行归一化ꎬ最后输出三通道冷却效

率图ꎬ实现预测输出ꎮ

２. ４　 判别器网络结构设计

多尺度判别器结构(Ｍｕｌｔｉ￣Ｓｃａｌｅ Ｄｉｓｃｒｉｍｉｎａｔｏｒꎬ

ＭＳＤ)被设计用于提升生成图像的真实性判别能

力ꎬ同时兼顾全局一致性和局部细节质量ꎮ 该结构

由 ３ 组具有共享架构但作用于不同输入尺度的子判

别器组成ꎬ分别处理原始尺度、２ 倍下采样尺度和 ４
倍下采样尺度的图像特征ꎬ以实现对不同层级语义

信息的联合建模ꎮ 生成器输出的三通道冷却效率图

作为输入ꎬ被扩展为形状为[Ｎꎬ３ꎬ５１２ꎬ５１２]的张量ꎬ
并经 ２ 倍与 ４ 倍平均池化生成下采样版本[Ｎꎬ３ꎬ
２５６ꎬ２５６]和[Ｎꎬ３ꎬ１２８ꎬ１２８]ꎬ分别对应输入 ３ 个不

同尺度的子判别器 Ｄｉｓｃ１、Ｄｉｓｃ２ 和 Ｄｉｓｃ３ꎮ 各子判别

器结构一致ꎬ由多个卷积模块堆叠构成ꎬ采用卷积核

大小为 ４、步长为 ２ 的卷积操作ꎬ配以批归一化

(Ｂａｔｃｈ Ｎｏｒｍａｌｉｚａｔｉｏｎ)和 ＬｅａｋｙＲｅＬＵ 激活函数ꎬ通道

数逐层扩展至 １ ０２４ꎮ 为提升模型的特征提取能力ꎬ
卷积结构进一步加深ꎬ堆叠至 Ｃｏｎｖ１５ 层ꎮ 判别器的

输出结果统一上采样并加权融合ꎬ用以综合评估输

入图像的真实性ꎮ
采用最小二乘生成对抗网络(ＬＳＧＡＮ)作为对

抗损失ꎬ通过均方误差替代传统 ＧＡＮ 的交叉熵ꎬ旨
在提升生成图像质量与训练稳定性ꎬ有效缓解梯度

消失并实现平滑优化ꎮ 为了提升冷却效率图的结构

还原能力ꎬ尤其是在边缘区域的重构精度ꎬ引入基于

Ｓｏｂｅｌ 梯度的边缘加权 Ｌ１ 损失ꎬ以增强对边缘细节

的学习能力ꎮ 生成器与判别器的总损失函数表

示为:

ＬＧ ＝ ∑
３

ｋ ＝ １

１
２ Ｅ ｇ^ꎬｅꎬｂ[ (Ｄｋ( ｇ^ꎬｅꎬｂ) － １) ２] ＋ λ􀅰

ＬＥｄｇｅＬ１( ｇ^ꎬｇ) (６)
式中:ＬＥｄｇｅＬ１—边缘加权 Ｌ１ 损失ꎻλ—调节项权重ꎻ

ｇ—真实冷却效率图ꎻｇ^—生成器生成的图ꎻｅ、ｂ—掩

码图像输入与参数信息ꎻＬＧ—生成器总损失函数ꎻ

Ｄｋ—判别器对生成图像 ｇ^ 的输出ꎻＥ ｇ^ꎬｅꎬｂ—期望生成

数据 ｇ^ 的期望ꎮ

ＬＤ ＝ ∑
３

ｋ ＝ １

１
２ Ｅｇꎬｅꎬｂ[(Ｄｋ(ｇꎬｅꎬｂ) － １) ２] ＋

１
２ Ｅ ｇ^ꎬｅꎬｂ[(Ｄｋ( ｇ^ꎬｅꎬｂ)) ２] (７)

式中:ＬＤ—判别器总损失函数ꎻＥｇꎬｅꎬｂ—真实数据 ｇ
的期望ꎮ

３　 结果与讨论

３. １　 训练方法及参数

模型训练在 １ 台搭载 ＮＶＩＤＩＡ Ａ４０ ＧＰＵ 和 Ｉｎｔｅｌ
􀅹 Ｘｅｏｎ 􀅹 Ｇｏｌｄ ６３３０ ＣＰＵ、运行 Ｕｂｕｎｔｕ ２２. １０ 系统

的工作站上进行ꎬ基于 ＰｙＴｏｒｃｈ ２. ３. １ 和 ＣＵＤＡ １２. ４
平台实现ꎮ ＣＦＤ 数据计算在配备 ４８ 核 Ｈｙｇｏｎ Ｃ８６
处理器与 ２５２ ＧＢ 内存的服务器上完成ꎬ单个 ＣＦＤ
案例的平均计算耗时约为 ４ ｈꎮ 训练采用反向传播

计算梯度ꎬ训练总时长为 １４ ２８０ ｓꎬ测试单个案例所

需时间为 ５ ｓꎮ 选用 Ａｄａｍ 优化器[２０] 迭代更新网络

权重ꎬ默认超参数一阶矩参数 β１ ＝ ０. ９ꎬ二阶矩参数

β２ ＝ ０. ９９９ꎬ常数 ε ＝ １０ － ８ꎬ初始学习率为 １ × １０ － ４ꎬ
批次大小设为 ４ꎬ总训练轮数为 ４ ０００ꎮ 与传统随机

梯度下降(ＳＧＤ)相比ꎬＡｄａｍ 引入动量估计与自适

应学习率ꎬ可有效提升收敛效率与稳定性ꎮ
为提升训练稳定性并避免陷入局部极小值ꎬ引

入基于验证损失的自适应学习率调度器(ＲｅｄｕｃｅＬ￣
ＲＯｎＰｌａｔｅａｕ)ꎮ 当生成器损失连续 １０ 轮无明显下降

时ꎬ将学习率调整为原值的 ５０％ ꎬ以促进优化过程

平稳进行ꎮ 网络损失函数由两部分组成:对抗损失

采用最小二乘形式(ＬＳＧＡＮ)ꎬ强化生成图像的分布

逼真度ꎻ边缘加权 Ｌ１ 损失则结合 Ｓｏｂｅｌ 梯度信息ꎬ
提升冷却效率图边缘区域的重建质量ꎮ 该复合损失

在保障整体结构一致性的同时优化了局部细节预

测ꎮ 实验结果表明ꎬ生成器与判别器的总损失在训练

与测试集上均稳定下降并最终收敛ꎬ如图 １０ 所示ꎮ
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图 １０　 生成器和判别器损失

Ｆｉｇ. １０ Ｇｅｎｅｒａｔｏｒ ａｎｄ ｄｉｓｃｒｉｍｉｎａｔｏｒ ｌｏｓｓ

３. ２　 冷却效率图像预测结果分析

图 １１ 为 ４ 组吹风比(Ｍ ＝ ０. ５ꎬ１. ０ꎬ１. ５ 和 ２. ０)
条件下ꎬ生成模型预测的气膜冷却效率 η 分布与

ＣＦＤ 计算结果的对比ꎮ 整体来看ꎬ模型在各工况下

均能较好地还原冷却效率的主要形态特征及其空间

分布趋势ꎬ特别是在射流覆盖范围和壁面附着区域

方面表现出良好的一致性ꎮ 在 Ｍ ＝ ０. ５ 和 Ｍ ＝ １. ０
低吹风比下ꎬ预测结果与 ＣＦＤ 高度吻合ꎬ冷却轮廓

形状及效率分布趋势基本一致ꎻ而在Ｍ ＝ １. ５ 和Ｍ ＝
２. ０ 高吹风比下ꎬ尽管整体轮廓仍较准确ꎬ但局部区

域预测结果相较 ＣＦＤ 存在一定误差ꎮ

图 １１　 不同吹风比下气膜冷却效率模型预测与

ＣＦＤ 结果对比

Ｆｉｇ. １１ Ｃｏｍｐａｒｉｓｏｎ ｂｅｔｗｅｅｎ ｍｏｄｅｌ ｐｒｅｄｉｃｔｉｏｎ ａｎｄ

ＣＦＤ ｒｅｓｕｌｔｓ ｏｆ ｆｉｌｍ ｃｏｏｌｉｎｇ ｅｆｆｅｃｔｉｖｅｎｅｓｓ

ａｔ ｄｉｆｆｅｒｅｎｔ ｂｌｏｗｉｎｇ ｒａｔｉｏｓ

图 １２ 为 ４ 组吹风比条件下ꎬＣＧＡＮ 模型预测的

气膜冷却效率与 ＣＦＤ 计算结果之间的绝对误差分

布图ꎬ用于评估模型的预测精度ꎮ 结果显示ꎬ误差主

要集中在冷却射流出口附近及其下游边缘区域ꎮ 由

于这些区域通常存在剧烈的冷却效率梯度变化ꎬ同

时在训练样本中对应的几何分布相对稀疏ꎬ二者共

同作用导致该区域的预测误差增大ꎮ

图 １２　 ＣＧＡＮ 模型预测的气膜冷却效率与 ＣＦＤ 计算

结果之间的绝对误差分布图

Ｆｉｇ. １２ Ａｂｓｏｌｕｔｅ ｅｒｒｏｒ ｄｉｓｔｒｉｂｕｔｉｏｎ ｃｈａｒｔ ｏｆ ｆｉｌｍ ｃｏｏｌｉｎｇ

ｅｆｆｅｃｔｉｖｅｎｅｓｓ ｂｅｔｗｅｅｎ ＣＦＤ ｍｅｔｈｏｄ

ａｎｄ ＣＧＡＮ ｍｏｄｅｌ

３. ３　 中心线与展向平均冷却效率对比分析

图 １３ 为 ４ 组吹风比(Ｍ ＝ ０. ５ꎬ１. ０ꎬ１. ５ 和 ２. ０)

条件下ꎬ沿气膜孔下游中心线方向的冷却效率分布

对比情况ꎮ 在各工况下ꎬ生成模型预测的中心线冷

却效率分布与 ＣＦＤ 结果整体吻合较好ꎬ但仍存在局

部的误差ꎮ 吹风比为 Ｍ ＝ ２. ０ 条件下误差最大ꎬ最

大相对误差为 ５. ４８％ ꎮ 吹风比为 Ｍ ＝ ０. ５ꎬ１. ０ 和

１. ５ 的情况下ꎬ最大相对误差不超过 ５％ ꎬ分别为

２􀆰 ９１％ ꎬ２. ４５％和 ４. ７６％ ꎬ与前面的分析一致ꎮ

图 １３　 ＣＧＡＮ 模型预测的中心线气膜冷却效率与

ＣＦＤ 结果对比

Ｆｉｇ. １３ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｃｅｎｔｅｒｌｉｎｅ ｆｉｌｍ ｃｏｏｌｉｎｇ ｅｆｆｅｃｔｉｖｅｎｅｓｓ

ｂｅｔｗｅｅｎ ＣＦＤ ｍｅｔｈｏｄ ａｎｄ ＣＧＡＮ ｍｏｄｅｌ
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为了更好地评估神经网络模型的性能ꎬ引入展

向平均气膜冷却效率来评估某一案例的整体冷却效

果ꎬ定义如下:

η－(ａ) ＝ １
Ｗ∫

Ｗ/ ２

－Ｗ / ２
η(ａꎬｙ)ｄｙ (８)

式中:η－ (ａ)—纵向位置 ａ 处的展向平均冷却效率ꎻ
Ｗ—展向宽度ꎻη(ａꎬｙ) —某一空间位置处的气膜冷

却效率ꎮ
图 １４ 为 ４ 组吹风比(Ｍ ＝ ０. ５ꎬ１􀆰 ０ꎬ１. ５ 和 ２. ０)

条件下ꎬ生成模型预测的展向平均气膜冷却效率与

ＣＦＤ 计算结果的对比ꎮ 相较于中心线冷却效率ꎬ展
向平均效率更能反映冷却膜在横向方向上的均匀性

与覆盖持续性ꎬ是衡量整体冷却效果的重要指标

之一ꎮ

图 １４　 ＣＧＡＮ 模型预测的展向平均气膜冷却效率与

ＣＦＤ 结果的对比

Ｆｉｇ. １４ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｓｐａｎｗｉｓｅ￣ａｖｅｒａｇｅｄ ｆｉｌｍ

ｃｏｏｌｉｎｇ ｅｆｆｅｃｔｉｖｅｎｅｓｓ ｂｅｔｗｅｅｎ ＣＦＤ ｍｅｔｈｏｄ

ａｎｄ ＣＧＡＮ ｍｏｄｅｌ

从对比结果来看ꎬ生成模型在 ４ 组吹风比条件

下均能较为准确地捕捉到气膜冷却效率随下游距离

递减的整体变化趋势ꎬ尤其在 Ｍ ＝ ０. ５ 和 Ｍ ＝ １. ０ 低

吹风比下ꎬ预测结果与 ＣＦＤ 结果高度吻合ꎮ 对于

Ｍ ＝ １􀆰 ５ 和 Ｍ ＝ ２. ０ 高吹风比工况ꎬ尽管预测结果与

ＣＦＤ 在大部分区域仍保持良好的一致性ꎬ但在靠近

喷孔下游区域ꎬ预测值相较 ＣＦＤ 结果略有偏低ꎮ 随

着吹风比增加ꎬ冷却射流动能增强ꎬ导致展向扩散加

剧ꎬ冷却气膜附着性下降ꎬ同时射流与主流之间的速

度梯度会导致湍流混合ꎬ从而使得冷却效率分布更

加复杂ꎮ ＣＦＤ 可以较好地捕捉这些小尺度的流动

细节ꎬ但生成模型在样本有限的情况下难以完全学

习到此类非线性流动特征ꎬ从而在局部区域产生误

差ꎮ 虽存在局部误差ꎬ但整体变化趋势预测得比较

准确ꎬ表明所提出的生成模型在不同工况气膜冷却

建模中具有较高的准确性与鲁棒性ꎬ如图 １５ 所示ꎮ

图 １５　 标准差分布图

Ｆｉｇ. １５ Ｓｔａｎｄａｒｄ ｄｅｖｉａｔｉｏｎ ｄｉｓｔｒｉｂｕｔｉｏｎ ｃｈａｒｔ

３. ４　 模型预测性能评估

为了更全面地评估模型的预测性能ꎬ在完整测

试集上计算了绝对误差和相对误差ꎬ并绘制了误差

分布ꎬ如图 １６ 所示ꎮ 从图中可以看出ꎬ模型在绝大

多数样本点上的绝对误差均保持在 ０. ０２ ~ ０. ０５ 范

围内ꎬ而相对误差控制在 ２％ ~ ５. ５％ ꎬ表明模型具

有较高的预测精度ꎮ

图 １６　 误差分布图

Ｆｉｇ. １６ Ｅｒｒｏｒ ｄｉｓｔｒｉｂｕｔｉｏｎ ｃｈａｒｔ

３. ５　 优化结果及讨论

为降 低 计 算 成 本ꎬ 将 条 件 生 成 对 抗 网 络

(ＣＧＡＮ)与麻雀搜索算法(ＳＳＡ)结合ꎬ用于优化对

锯齿槽道结构参数ꎮ ＳＳＡ 是一种受麻雀觅食行为启

发的群体智能算法ꎬ通过模拟生产者与觅食者的协

作与预警机制实现全局搜索ꎬ具备结构简单、适应性

强等优点ꎬ被广泛应用于各类优化问题中ꎮ 本文采

􀅰６３􀅰



　 第 ２ 期 刘金江ꎬ等:基于 ＣＧＡＮ￣ＳＳＡ 的涡轮叶片锯齿槽道冷却效率预测与结构参数优化

用 ＳＳＡ 算法对几何参数空间进行搜索ꎬ以获取面积

平均气膜冷却效率最大的参数组合ꎮ
在 ＳＳＡ 中ꎬ生产者具备更强的全局搜索能力ꎬ

在每轮迭代中起引导作用ꎮ 生产者的位置按照如下

公式进行更新:

Ｐ ｔ ＋１
ｄꎬｊ ＝

Ｐ ｔ
ｄꎬｊ􀅰ｅ － ｎ

τ􀅰ｉｔｍａｘꎬ　 Ｗ２ < ＳＴ

Ｐ ｔ
ｄꎬｊ ＋ Ｑ􀅰Ｌꎬ　 Ｗ２ > ＳＴ

{ (９)

式中:ｎ—种群中的麻雀总数ꎻｔ—迭代次数ꎻＰ ｔ
ｄꎬｊ—第

ｄ 只麻雀在第 ｔ 次迭代时第 ｊ 维的参数值ꎻＷ２—个体

的预警值ꎻＳＴ—预设的安全阈值ꎻＱ—服从正态分布

的随机数ꎻＬ—一个维度为 １ × ｊ 的全 １ 向量ꎻτ—常

数ꎻｉｔｍａｘ—迭代次数的最大值ꎮ
觅食者根据当前种群中生产者的位置变化ꎬ动

态调整自身策略ꎬ其位置更新如下:

Ｐ ｔ ＋１
ｄꎬｊ ＝

ＱＰ ｔ
ｄꎬｊ􀅰ｅ

Ｐｔｗｏｒｓｔ－Ｐ
ｔ
ｄꎬｊ

ｄ２ ꎬ　 ｄ > ｎ
２

Ｐ ｔ
Ｏ ＋｜ Ｐ ｔ

ｄꎬｊ － Ｐ ｔ
Ｏ ｜􀅰Ａ ＋􀅰Ｌꎬ　 ｄ ≤ ｎ

２

ì

î

í

ï
ï

ïï

(１０)

式中:Ｐ ｔ
ｗｏｒｓｔ—所有觅食者中ꎬ适应度最差的个体所在

的最差位置ꎻＰ ｔ
Ｏ—生产者的最佳位置ꎻＡ ＋ —由矩阵

构造 Ａ 的伪逆矩阵ꎮ
假设种群中约有 １０％ ~ ２０％ 的个体具备危险

感知能力ꎬ其位置更新方式如下:

Ｐ ｔ ＋１
ｄꎬｊ ＝

Ｐ ｔ
ｂｅｓｔ ＋ ｖ􀅰｜ Ｐ ｔ

ｄꎬｊ － Ｐ ｔ
ｂｅｓｔ ｜ ꎬ 　 ｆｄ > ｆｇ

Ｐ ｔ
ｄꎬｊ ＋ ｋ􀅰 ｜ Ｐ ｔ

ｄꎬｊ － Ｐ ｔ
ｗｏｒｓｔ ｜

( ｆｄ － ｆｗ ＋ μ)
æ
è
ç

ö
ø
÷ꎬ 　 ｆｄ ＝ ｆｇ

ì

î

í

ïï

ïï

(１１)
式中:Ｐ ｔ

ｂｅｓｔ—迭代中全局最优个体的位置ꎻ ｆｄ—第 ｄ
个麻雀的适应度值ꎻｆｇ、 ｆｗ—全局最优麻雀的适应度

值和全局最差麻雀的适应度值ꎻｖ—服从标准正态分

布的随机变量ꎻｋ— [ －１ꎬ１]区间的随机变量ꎻμ—一

个很小的正数ꎬ用于防止分母为零ꎮ
为确保 ＳＳＡ 的收敛性与稳定性ꎬ设置最大迭代

次数为 ２００、种群规模为 ３０[２１]ꎮ 该设置在气膜冷却

优化中表现出良好性能ꎮ 图 １７ 为 ＳＳＡ 优化过程中

的收敛曲线ꎬ横轴为迭代次数ꎬ纵轴为面积平均冷却

效率负值( － ηａ)ꎬ值越低表示优化效果越佳ꎮ 实验

结果显示ꎬ － ηａ在第 ８０ 次迭代后收敛ꎬ获得的最优

面积平均冷却效率为 ６５. ６％ ꎮ

图 １７　 ＳＳＡ 的收敛过程

Ｆｉｇ. １７ Ｃｏｎｖｅｒｇｅｎｃｅ ｐｒｏｃｅｓｓ ｏｆ ｔｈｅ ＳＳＡ

优化效果的评估采用 ３ 种代表性工况进行对比

分析ꎬ原始工况 １、数据集中最优工况 ２ 及 ＳＳＡ 优化

工况 ３ꎬ对应参数如表 １ 所示ꎮ

表 １　 锯齿状槽道结构的参数

Ｔａｂ. １ Ｐａｒａｍｅｔｅｒｓ ｏｆ ｓｅｒｒａｔｅｄ ｔｒｅｎｃｈ ｓｔｒｕｃｔｕｒｅ

工况
锯齿角度 /

( °)
吹风比

槽道高度 /

ｍｍ

面积平均气膜

冷却效率 / ％

１ ２８. ６８７ １. ５ ８. ７１６ ４５. ３

２ ３９. ６８７ ２. ０ ７. ５４３ ６３. ９

３ ４２. ５６２ ２. ０ ４. １１８ ６５. ６

图 １８ 为不同工况下锯齿槽道压力面的冷却效

率分布ꎬ可直观比较各设计方案的冷却效果差异ꎮ
如图 １８(ａ)所示ꎬ原始工况下整体冷却效率偏低ꎬ冷
气流沿压力面扩展受限ꎬ前缘区域存在大面积低效

区ꎬ说明覆盖范围有限且局部热负荷风险较高ꎮ 数

据集中表现最优的样本如图 １８(ｂ)所示ꎬ冷却效率

显著提升ꎬ高效率区域沿冷气流路径分布更连续ꎬ整
体覆盖性增强ꎬ主流干扰减弱ꎬ体现出更优的参数配

置ꎮ 图 １８ ( ｃ) 是经过 ＳＳＡ 优化的工况ꎬ其冷却

效率分布更加均匀ꎬ绿色与黄绿色区域显著扩大ꎬ有
效覆盖了压力面主要热负荷区域ꎬ表现出明显改进ꎮ
高效率区的增强说明冷气流的附着性与扩散能力

均得到显著提升ꎬ尤其是在原始工况中效率较低的

中部区域ꎬ冷却性能改善尤为明显ꎬ反映出优化设计

在提高气膜流动性与扩展冷却区域方面的良好

效果ꎮ
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图 １８　 冷却效率分布对比

Ｆｉｇ. １８ Ｃｏｏｌｉｎｇ ｅｆｆｅｃｔｉｖｅｎｅｓｓ ｄｉｓｔｒｉｂｕｔｉｏｎ ｃｏｍｐａｒｉｓｏｎ

３ 种工况下的展向平均气膜冷却效率随流向位

置(Ｘ / Ｄ)的演化ꎬ如图 １９ 所示ꎬ用于对比优化效果

的提升程度ꎮ 实验结果表明ꎬ优化方案在整个流向

范围内的冷却效率均优于原始工况与数据集中的最

优样本ꎬ尤其在前段区域(Ｘ / Ｄ < １５)表现最为明显ꎮ
相比之下ꎬ原始方案效率整体较低ꎬ降幅较快ꎬ而数

据集中最优样本虽在中后段具备一定优势ꎬ但在

Ｘ / Ｄ ＝ ２０ ~ ３０ 区间存在效率低谷ꎬ可能导致局部过

热ꎮ 优化结果在效率稳定性与覆盖性方面更具

优势ꎮ
综上所述ꎬＳＳＡ 在锯齿状槽道结构的气膜冷却

性能提升方面表现出显著优势ꎮ 优化后工况的冷却

效率空间分布更加均匀ꎬ有效减缓了高温区域的集

中问题ꎮ

图 １９　 原始、最优与优化工况的展向平均冷却效率对比

Ｆｉｇ. １９ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｓｐａｎｗｉｓｅ￣ａｖｅｒａｇｅｄ ｃｏｏｌｉｎｇ

ｅｆｆｅｃｔｉｖｅｎｅｓｓ ｂｅｔｗｅｅｎ ｔｈｅ ｏｒｉｇｉｎａｌꎬ ｂｅｓｔ

ａｎｄ ｏｐｔｉｍｉｚｅｄ ｃａｓｅｓ

４　 结　 论

本文基于 ＣＦＤ 模拟与数据驱动方法ꎬ探讨了锯

齿状槽道气膜冷却中设计变量与工况条件对冷却效

率的影响ꎬ结论:
(１) 基于 ＣＦＤ 数据构建的 ＣＧＡＮ 模型能够快

速准确地预测锯齿状槽道气膜冷却效率分布ꎬ在中

心线和展向平均冷却效率上与数值模拟结果高度一

致ꎬ各工况条件下预测误差均小于 ５. ５％ ꎮ
(２) 结合 ＳＳＡ 进行参数优化后ꎬ优化后的工况

面积平均冷却效率为 ６５. ６％ ꎬ较原始工况提高

２０􀆰 ３％ ꎬ冷却效率分布更加均匀ꎮ
本文所提该模型目前主要针对锯齿状槽道冷却

结构进行验证ꎬ对于其他类型的冷却结构还没有测

试ꎬ未来可将该方法推广至扇形孔、复合孔等更复杂

结构中进行验证ꎮ
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态特性参数辨识方法 [ Ｊ] . 热能动力工程ꎬ２０２４ꎬ３９ ( １ ):

２０５ － ２１５.

ＣＨＥＮ ＺｉｑｉａｏꎬＨＯＮＧ ＪｕｎꎬＸＩＡＯ Ｇａｎｇꎬｅｔ ａｌ. Ａ ｍｅｔｈｏｄｏｌｏｇｙ ｆｏｒ

ａｅｒｏ￣ｅｎｇｉｎｅ ｄｙｎａｍｉｅ ｃｈａｒａｃｔｅｒｉｓｔｉｃ ｐａｒａｍｅｔｅｒ ｉｄｅｎｔｉｆｉｃａｔｉｏｎ ｂａｓｅｄ

ｏｎ ＳＳＡ￣ＮＡＲＸ [ Ｊ] . Ｊｏｕｒｎａｌ ｏｆ Ｅｎｇｉｎｅｅｒｉｎｇ ｆｏｒ Ｔｈｅｒｍａｌ Ｅｎｅｒｇｙ

ａｎｄ Ｐｏｗｅｒꎬ２０２４ꎬ３９(１):２０５ － ２１５.

(王治红　 编辑)
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