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Gas Turbine Sound Pressure Anomaly Detection Method based on NARX
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Abstract; The large-scale access of new energy to the power grid requires the frequent switching of the
working state of the power generation gas turbine, which leads to an increased risk of failure. Therefore,
anomaly detection is more important for the safe operation of the gas turbine. Aiming at the problem of
gas turbine anomaly detection, a baseline modeling method based on nonlinear auto-regression exogenous
(NARX) with CatBoost algorithm was proposed. The NARX was used to establish a baseline model for
the sound pressure characteristic signal of the gas turbine. The CatBoost algorithm was introduced to en-
hance the NARX fitting ability. Bayesian optimization was used to optimize the hyperparameters of the
model. The effectiveness of the fusion method in anomaly detection was verified through experimental da-
ta. Besides, the proposed NARX-CatBoost was compared with the method and performance based on
NARX-FROLS model and ensemble deep random vector functional link network (edRVFL). The results
show that the fitting RMSE value of the normal sound pressure root mean square is 0. 008 50 by NARX-
CatBoost method, and the fitting accuracy is obviously better than the NARX-FROLS and edRVFL meth-
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ods. The accuracy of this method for anomaly detection of abnormal sound pressure root mean square is

96.94% , which shows the feasibility and accuracy of establishing a baseline model for anomaly detection

through normal sound pressure characteristic data.

Key words:

51

12

BAECHUPE D L ) AR UK A5 Tk BT A
B s KR E BT 2 RE L2 SR E &
DREE S B AU PR L AR ) TS BE S5 B R U 1Y
REFA T H M & AR ?"MEIIHW’?%@JE%
TARRE PR . BR R P F e = R
& T Tt R A ?ﬂiﬁﬁﬂé%iﬁﬁ:ﬁ%k
AR GRS FERRMEBL T S HR SR LA T
ﬁ&ﬁﬁ@fﬁ?)ﬂﬂ'—ﬁ@%f@ﬂ(PHM)jEj\jE%io

SR O B AT B R — 6 H
B TRE ALY S 0 A A 5 REWFE, Li 5%
O3 S A T X AR R G AT S ARG
Yue 55 AN BT 0L A A R AT 3 LI

RN J7 ¥ (MEMAD ) |, 5230 T 4% 30 45033 18] 57
h{m' Liu % A48 7 — Fhof MR HE 2R
CSiamese , SLIHR 5 5 A 5 5 H K20l Nor &
PR T T g e DL T R 2 ) B R
S HAGHI B ERA B . Miiao 25 0T SR RS X 55 7
R R TR N 45 R I A M RE . Fu SE M
P TR EF A TR A g, B T R
YIRS . Zhao 55 U ER T — Bl A 38 B
?ﬁﬁ%ﬂ%LL%ﬂAﬁfiﬁf?ij}?ﬂiéélm%ﬂ"]ﬁ%‘,—93
BT RAEC LR R 1Y S A, SR, DL RO 0F
BeA o B SR Z B A, (68 ot R B R T 5
A, Al R

iy AR A FEZe 4 A 1A %Y ( Nonlinear Auto-
regression Exogenous, NARX) J& 1990 4F$& H 1 —Ff
AL sh & R G MR ik NARX 7
H [BIHBL Y ( Auto-regression ) 7E AE £k P4 & 48 Hh 19 A2
A, HRTFE S RS | R G | Tl 28 ] 55 S 15
Nz A, Amirkhani 28 AN F ] NARX A5 52
BT B R AR ML A TS A DU 5 o g v sh A
1, Giorgi % NI NARX AR S8 T il 2 &
SHLPERETO 1St A NARX BEALAE IE
BRI T BRARIR AR ML A ) 28, i i

anomaly detection; baseline modeling; NARX; CatBoost; Bayesian optimization

SEBIESCEL T SR A, AT R NARX A
RUSZIL T HE A5 496 A LA 45 0 [l IR 253103, Rah-
moune 25 A5 Bl NARX 5 54 15 0 BR S5 HLIE B0
{H, - 3 T {5 52 B A 19 A% 22 58 W52 AR
NARX A5 7Y B SRR A B A P05 S NARX RS20 9 4%
O FRAT AN [R] A9 400G B3 1o o A5 U F0 0 58 7 5 1
A AR I ],

BT LA R, AR SCHM T —F 3t
NARX A5 () % v RUR S AR AL S A0 0 i, o
S RPEBR IR AL AR AR (S 5 RR 0, @ 57 6 W 19
NARX A 71; Hoyk i il Catboost 341 A8 b 25 () 2%
XF NARX #EATHA G 5 SR 5, 4 1 DL 0 A 38032 ) %oF
NARX AYIHIE 22 B0 CatBoost 1581 HEAT S8 41,
e , A SEA LB 56 AR 78 1) 0055 E B 1 5 5
Rl ia

1 NARX-CatBoost [RIE

1.1 NARX BHE

NARX J&HA SR A AR M A R AR

LSRN/

Y, = FLY_ Y, X, X, ] (1)
A Y—R G n 5 B X— R G A — 2470
20y, —WHAE d B ARG A X, — AT d,
() 2R Geli A F— TR 30R

NARX (AR, 4 32 B4 HE WS 43 4 A B s
T FL RS S5 H0 iy S 9 B AR KR . NARX AL FE
PR 25 — A O Rl A St i B
FREAE A i A FP s s 9 s 2 A58, — s
BT 5 55 RO P A R A S Y T
DNMELAE SRy A i 580 1) B S 5080, — s T
ZAM , ASCIRF ] NARX BRI 7 F HOR AR

FERYFELAGIAY | PR I ] R Sk A 7 20 i

NARX #4550, — R FH 22 30 =X ok i A L 4%
B PR I 25 A R /DN i B R AT b, 23 5 R
A QU ST FIENGE R IR R (AN VI (S d VR N 33
T RIS, s I 2% S5 458 F TR 2l 2R
PEY G o AR SCHET SEBR B (AR DG PR R, IR =%



$72 . woBE B

A

2026 4

JEGIA CatBoost B2 LA sRALGHE ST .
1.2 CatBoost JRIE

CatBoost 5 7% M1 Yandex 728 #) 7F 2017 4F #2
H119) - CatBoost JB& T 6 BF 3% T o 3% W ( Gradient
Boosting Decision Tree , GBDT) ) — i , K HE R —
N R FEAE S F . GBDT #ERINT DL R A £ n]
SRR A A

fulx) = gm,@k) (2)
A T () — PRI s M—U R AE; 0,— PSRBT
KIBHLf, (x) —GBDT B

AR T A2 BB IR, i
I I PRSI 72 D SRR S0, 3R pRECH -

0O, = arg minZL(yi,fkf](x)+ T(x;,0,)) (3)

s LR ARy, — I 2 B0 110 i SRR A ]
S5 k=1 BROCHA 5« — I 2R 20030 A9 g AR Ak
i 4

CatBoost 7£ GBDT LAl |, i 5] A T 2l #44
(One-hot ) Zitfith , iy ARHIEFE A6 A 5 H bR 4 i,
B E TR SRR
1.3 NARX-CatBoost &£

% H CatBoost fEF NARX B p )l & T. A,
NARX AR A 2E i H I 3 14805 56 ok 20K 21
B B RE 4 5 A Sl CatBoost 1Y% A, ]
H CatBoost 5 #: #1471 & . NARX-CatBoost %% 14
B L iR, Hod,x (o) 0 BEZIAER 1 A4
A, (0) 0 e 2By (1) 9 o 2B i d,
S5 n ANER I GE RE, ) i I HE Ry
() ¢ W T

d

) —f B
‘od

50— B
d,

yO) —f WEE

B 1 NARX-CatBoost £5#E
Fig. 1 NARX -CatBoost structure diagram

CatBoostii %l  —» }A’(t)

7E NARX 1 By A S5 HH OIS A8 28 022 % NARX
B AUSSSOR ™ A G | R CatBoost X272~
AR M ZREES RO U, i, T 28T
B, DUHHTHA SR T Snoek 45 A 7E 2012 ARE4R
SR G TS

X} F NARX AR o () 15 SiE 28 850, 22 101 =X 4 1
CatBoost "1 [ B S I | 24 2 38 SRR R (12
IE DAk 2R AT DL 3 A A, HLR O A i 2 an 1 2
iR,

It

Wk BB S S %t |

| wimkEss |

DU ; .
bt [ AEMNARXEIE  |Je— i

| CatBooSt*ﬂ‘%gIﬁiﬁ%ﬁl

| wgmmsg |

| BAARERR |

| Ml EbRRE |

| mgkmgm |

2 NARX-CatBoost U {4k ifi 2 &
Fig. 2 NARX -CatBoost Bayesian optimization flowchart

R 4558 NARX BYH AT SE R 4, o e
e ZE d, 2O YKL (degree ) AT CatBoost £5 7 fY)
T K e 9K B B it (terations ) | 2% 2] % ( learning _
rate) \ FARRA i KIRBE (depth) (12 IENAL R (12
leaf_reg) # S HEHI

IR 2 RS E S A0S () AL U 248
AR 2 K0 i NARX A5 Y JE l 5 g A\ P S
T iy ) I S TR R Y 22 TR R

AR 3 AR S5 E L CatBoost £E7Y i F 2P
BR 2 iy 223 X FEAE A, U125k CatBoost F7

PR 4 DL NARX AR B JEI0 A 5 552 P (i ) 24
JifRi% 2% (RMSE ) 48 bk, o155 DU 3461 2% ek 4K
RMSE AH

RMSE = J;i (yi _5/1'>2 (4)
KA m—HEAR A By 50 0 DR R B




552 M

W HE 55 BT NARX (YRR ES LA R S50 A I i <73 -

v B T

PR S HHT NARX BERUAT CatBoost BiHY

AR 6 FI W2 750 e 25 AR R 25 B KAE B
IR RAEAC RS, i e, R [mT R LS8, 4
AN AR, DDA ] A5 B AR

2 LINHMIERESHIE

2.1 HIEXR&
ASCAH FH ) SEALEC R R VR T BR R AL 5 2R 3L
98, HAB RS 28 B K 3 Fi

| | #
|| &
E &
=| | =
o) | 4L

B3 fRBARECERER

Fig. 3 Schematic diagram of sensor installation position

P AR IR AR AR AR b, — N IEXT H R R
S, — N IEXE SRS, RS AN
FAG P AL RN A5 CH2312 @& 5 TR R AL 7 4,
FEALE 1/4 BT FEMARL 75 45 S 1/4 St HrE i
Ko Hor, 174 Je~F e IR i 28 EEHE AR S8
e A AR Y A 6.3 ~20 000 Hz, J5 0 b 45
4 TEC10944 M s e, R R 0. 64 mV/Pa, 1/4
Foo A EORAS EESE.4 mA HIRALH  SMB 2
Kb K BEESN 58 mm F ABHBT N 10 G BRA, i
BHBTN 110 B, B K AME 5 RN 3.5 Vims, 0%
JEFEA 10 ~ 110 000 kHz, Fei=r i Hgoh 170 dB,

S BTG5 R R G T LabVIEW K4
HEFT P AT 5 MR AR A FIVRFAE SR, P 4 U
FEOEALFE B A5 5 A 2 7 AR | S AL i B Ak
5 R B AT AR R AR

4 75 MR A 2 5 A SR AR ) B v ) A R0 MEL, T LA
PR BB 1 LS AR AL, FLA R

Yo = [T N (5)
RMS — ~ N

T X2 05 MU s N—R A TR0 9 SR A 4
X —RHFE A E,
FRORAEL PR B A 2 A e i (9L R LA A 5 1%
IS SN A=W
X = 1X Xy Xy (6)
UL re S P T $1 3 5 1) 20 A7 15 B0 B R AR 2

— AT DA SRR B i (4 201 RS Ferh IS 3 A
AR BE A 3 A N

K = /o (7)
Ao, — B0 ADEE B EL (X -p)* ], E NEEE
Bopu—IEH;o—brifEZE Bl o = VE[ (X -p)? ],

BRFCHLNE R —Fh KB B e e e 4, Eis T
P 27 A S I N AL G )RR IE AR 5, 3
SOHFAE AT VR BRa2 W ) E S48 bR . PR, 7F Lab-
VIEW Hffi ACPR B it A8 4 (FFT) B X 5 iR
(A7 A S AT A Sl A8 46, O R 4 e 3 88 UL 5
RAGATHFAE , Heh 831 £, i A=k

f = n/60 (8)
K n—5E 3 v/ min,

W S AR g A FH AR TR 0 7 A R R
PRBNBLG v 5E A 43 B i T e AR Y AR Ak T 5
MRS A

Fone = 1+ 2/60 9)
K Z—1ZH M R i 8L
2.2 HETALE

I T BB AR MR T e, DRI X i A
HIPPT A B A T IR AL P, SG ( Savitzky-Golay ) 7€
W — i FH U i, BEREM I e S | SLRE IR FR AR
SIRARRRE | RO BT A R AR 5 3547 SG B,
JEad S LA SR O uE e S H, S BBE R | O
FEANPE 4 Ji

Frih

[aEmsr. ook RG]

| PR [ o N 1 o |

| scusscitsman |

l

EE AR |

B4 SGiRiEmER
Fig. 4 SG filtering flowchart

TEPE YL 2 )5 X R G BRI AT U1 43, A i 2R 4
FNEAELE P43 5 EE 4390l ok 80% 1 20% , [R]E,



74 . g

3 o TR

2026 4

TERAE th A2 B 1 B 4R, IR ik S A Y X
RS R RE T

TEB SRS T IEFIRES T B R R4
TEA T AT A AR AR

AR P RRIE S HEAT B ARG ST, 45 E
ILRFAE (EL ) 1 B 3 R B d ) U

A2 IR R MU R | o e R AL
FEoy M B0 i A IE R0 o, I BUE I L

AR 3 AT F IR NARX BRI 2%, LIS (9)
B AJF A, DL FARHE R 1 e 80 U B b itk AT
BSEARAL, NI B S

HUR 4 YL R 3 AR S # oL
NARX AL A5 s 4 7 A, A B 1 {7 5

RS R TR 4 dr AL it 5 5 Bcdis 1 T
IO, 5 5 (7 X 57 i P A 7

3 SRIGIGIE

3.1 [RIREIEHER

ARSCEEE R A 1 &R AR, e
iR AU & T s IR A, Ria A
BL PEFIRAS . ARG A7 RS 1E 8 52 50 040 e iR
0 B Y 5 5 i 0 2w 1 2 - % 5 L g - S = Wl B g
TR 80% Fi1 20% ; %oF He v 1 S i £5 s 4% RIS i
A LSRR REAS o T A B X o e R B
HIH—FLBERF (0,1) .

AR AR IE BRI S B, TR %
AR 22 B 5 Yl ) PR i A B S AT T
SG U8 .

# 1.00
-
075 I | | | I %%ﬁﬁﬁ\
0 1000 2000 3000 4000 5000 6000 7000
A ) /s
# 1.0 —
& — AR
=) w— R
IE 0.8t 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
A} 8] /s
j{% 0.75 F
& 0.50 -
H 0251
18

0 1000 2000 3000 4000 5000 6000 7000
A 8] /s

5 EIEHFIREEHE
Fig. 5 Normal data of root mean square of

sound pressure

HITE 5 AT, SG g I n] IAESRAERIE IR AR
ORISR T, X Rk R s AT R g, 7 37
RS H BRI 6 7, 75 T HRAE 5 400 s I

jl%'i

U5 W o s T I R
W LF
#® — R
% — B
g_» Ok 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000
s 1) /s

1 .

# — JEUG R
e — R
E ok 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000

= st [] /s
14

0 1000 2000 3000 4000 5000 6000 7000
i a] /s
6 FREHFRSELE
Fig. 6 Abnormal data of root mean square of

sound pressure

3.2 NARX #RE Rl Z 51E

A 1.3 7 NARX-CatBoost AR {diH] 3.1
BRI AT R A I E, o NARX P % A
IHIE R d, BB 2, I IER L 4, BN 1,
NARX #0065 I fift FH %) 35 pR £5CA 22 10 2 ok 4 5 L i
PRI TR G pRER, 25 pR B B B L (1,5)
CatBoost fix KIPLH M A=W (1,100) , % 2] F3E
B2 (0.01,0.5) , BRRRA e KR BEYE [ (4,10)
L2 IENE R EGE R (1,20) .

Yt A&, DU 3 0 A ok R4 2R {8 A2 1k 4an 141
7R

0.011 F
0.010 -
0.009
0.008
0.007
0.006 -
0.005

BRME

0.004 +

0 25 50 75 100 125 150 175 200
EEIAN/S

7 RMEREREEEL

Fig. 7 Change in Bayesian optimization loss



2

AP , 55 6T NARX HOSRSFC ML J5 57 60 75 vk =75 -

DU A AR R R B Bt O (B B B
FEIEA 135 WG BEARE TR A, fE )5 65 IR
BT RN, H AR B L 50 1k,
PIAA T R LR AR, L, BT LA Sk DLk 357 £k
L2 B, I B R KR SR A i oy 90, 2 ) R hy
0.265 555, FRA s R IR BE R 9, 12 TE WL RECh
4 FEeRERECR S

18 S NARX A5 AL it FH I 25040 1) Fl {8 5
SEAB AR B H b BT R e B B kR 3 P 43
PEBE(TQR) (AT, AT RASRER 3, #0418 5 U1 254
AT S BHRLE 1) RMSE 4 0.000 02, 54 12
BFR2E A ANE 9 Fiow, v] LUK BRER 25 50 A #8h
e AR AAE £0.05 ZJA], 7T LA A NARX-
CatBoost FERIXT B SZAE LA RURBE4F

0.75 F— ssem
0.70 == B
W QRFEH
0.65 -
0.60 -
0.55
0.50
0.45
0.40
0351

FEXI TR /Pa

1 Il 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000
Hif 6] /s
B 8 NARX-CatBoost il Z##E H X E SHNERS EL
Fig. 8 Comparison between true value and predicted

value of NARX-CatBoost training data

40000
35000 -
30000 -
25000 -
20000
15000 -
10000 -
5000

BB

0 L I L L 1 1
-0.10-0.05 0 0.05 0.10 0.15 0.20 0.25
gppkE

B9 NARX-CatBoost Il ZEIEFNEE 576
Fig. 9 Residual distribution predicted by NARX-CatBoost

training data

10 S NARX 7 A 46 Tk 0 40 9 #0000 (5
FEAAEPXT o B E SR A kR 3 89 TQR 8
B, AT LOWEL R A5 R 1 2 godis 1Y 40L& 850R

B BE LA B RMSE 24 0.000 61, B 5E LAY IR
BEEE B AR T R A [R] s S AR BRAIE BT A 50080 35 43 A
FEBIE T, B LA i 5% 22 40 A IR 11 iR, 3
AHBLE +£0. 025 Y B A, B0 $i i B 5 s AE 0. 125
ZF AT LA AR A 4D R

— Y
== HE
0.6 ORI
«
&
=® 05
SN
ﬁ 0.4r
18
03
02 (S 1 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000
st 1] /s
B 10 NARX-CatBoost 5 iF #{#E 5 LB 5 FET LE
Fig. 10 Comparison between true value and predicted

value of NARX-CatBoost validation data

7000
6000
5000
4000
3000
2000
1000

0
-0.075-0.050-0.025 0 0.025 0.050 0.075 0.100 0.125

UERF=
11 NARX-CatBoost 3 iE BN % Z 57 %
Fig. 11 Residual distribution predicted by
NARX-CatBoost validation data

BBt

3.3 NARX {REREKN

FEXT NARX AT U SR R AL I | 15 31 4
FRABEAY R 3R S B AR A A 7 e A

NARX S5 K I 45 SR AN & 12 s, S il i)
RMSE 24 0. 008 50, 5 65 (4 E i o8 96. 94%
H & 12 AIH1,S5 500 s 2 HiF A9 1E 5 500E , NARX A5 7Y
PynT LABRR , B o0 A & BT A O R R s AE
5500 s J& AR H RO NARX A T 000 {8 W A T 5+
HEE, HIE RN, WA IQR B IF A
Aef0 o S BHE D NARX A5 280 B Xof B vk S
PEATURA] 33t 358 BH XA S F8 B R A I % 0
PEATERASE T DASEEES F AR



- 76 - Mo fe

2026 4

LOF — soscqm
-- Bl
0.8 F == IQRR{EHF

0.6

0.4 +

75 R AR /Pa

0.2

0t I I 1 1 1 1 I I
0 1000 2000 3000 4000 5000 6000 7000

Hif 6] /s

B 12 NARX-CatBoost 5 & 4 #E & 3 R
Fig. 12 Abnormal data detection effect of NARX-CatBoost

3.4 NARX {RE S HMER B LL &

g T B4 Hb A I NARX-CatBoost #57 f) 45 |
AR NARX A4 5 HoAth 7 v 64T L3, B 4 5
T 1) F R0 0E OE 28 f /N 3R ik i NARX 7 ( NARX-
FROLS) 4 VR BE L ) 2 R AU BE 12 X 45 ( Ensemble
Deep Random Vector Functional Link network ,edRVFL)
NARX-FROLS %1 = NARX #5781 fz FE A i A5 750 | BRI
FRHE NARX A A8 245, A6 B SE 45040 4 4 FROLS
SR AT LA A9 B B A AR A S NARX-
FROLS #7512 %% Fl 55 NARX-CatBoost F5 %1 A1 7] 1)

edRVFL J&—FhZ5 6 1 TR BE 1 28 I 28 14 i 2
> HIBEAILAL foh 2 W 25 A5 1Y 5 5 £ 2 R A1 2 U3 i
BRI G R , 46 i > IR B R OR | P2 =
Rz ARE P,

NARX-FROLS #RIF edRVFL #5584 Il R 5040 (1)
PIARCRNE 13 fis
0.8 F
0.7
0.6
0.5
04+

03r

0.2
0.1+ == NARX-FROLS
—- edRVFL

0
0 5000 10000 15000 20000 25000 30000 35000 40000
B[] /s

7R J5 i /Pa

13 NARX-FROLS #1 edRVFL /Il ZR##E
ESEMBNEXT L
Fig. 13 Comparison between true value and predicted value

of training data of NARX-FROLS and edRVFL

NARX-FROLS #AIH1 edRVFL A 1| 25 5035 Y
RMSE {f 43 % & 0. 03359 5 0.001 36, NARX-
FROLS #i#1 5 edRVFL B A1 55 UFEH #5 20OR 1 &
14 fir7R ,NARX-FROLS #5# 5 edRVFL 55 1) 5 1iF
BdE ) RMSE 43051024 0.016 39 5 0. 002 16,

- NARX FROLS
==+ exIRVFL

ova

0.60 -

7
0.55 ‘,‘
0.50 - \

\

0.45

7R T AR /Pa

t———-—

0.40 -

0.35

0 20‘00 4000 6060 8000 10000
s} 1) /s
B 14 NARX-FROLS 7#1 edRVFL WiF iR E L&
FNFM AT b
Fig. 14 Comparison between true value and predicted value
of validation data of NARX-FROLS and edRVFL

4% B®

-l

(1) NARX-CatBoost 158 52k {45 L A% 58 7 12
AT B i b, o T RS O iRE LA
RMSE AH% T oA 7 i AH 22 50K, W1 WA T NARX-
FROLS f5 Bl edRVFL #5551

(2) NARX-CatBoost f5 51X 75 He ¥4 J5 #R(H 8h 25
FEPE TR LA R 9 S B 1, L0 R M ) 1R 25 43
MTE £0.05 Z[A] R E LS A B e it 1
BRI

(3) NARX-CatBoost #7852 H T %F
R A HERR 2l 96.94%

S HRE 1

S Xk

[1] TAHAN M,TSOUTSANIS E,MUHAMMAD M, et al. Performance-
based health monitoring, diagnostics and prognostics for condition-
based maintenance of gas turbines: A review[ J]. Applied Energy,
2017,198:122 - 144.

[2] LIU Z,KARIMI I A. Gas turbine performance prediction via ma-
chine learning[ J]. Energy,2019,192:116627.

[3] UPARWAT A,NAGRALE P, GAWANDE P, et al. A review on
failure analysis of turbine blades of acro gas turbine engine[ J7. In
ternational Journal of Scientific Research in Science and Technolo-

2y,2022,9(3) :187 - 192.



552 M

B AE 55 . BT NARX [

SECHLFE 57 1 A 75 vk

« 77 -

(4]

(8]

[11]

[12]

FAHMI A T W K,KASHYZADEH K R, GHORBANI S. A compre-
hensive review on mechanical failures cause vibration in the gas
turbine of combined cycle power plants[ J]. Engineering Failure A-
nalysis, 2022 ,134:106094.
VOLPONI A J. Gas turbine engine health management: Past, pres-
ent,and future trends[ J . Journal of Engineering for Gas Turbines
and Power,2014,136(5) :051201.
LI F,WANG H,ZHOU G, et al. Anomaly detection in gas turbine
fuel systems using a sequential symbolic method [ J ]. Energies,
2017,10(5) :724.
YUE Y,WANG H,ZHANG P, et al. An anomaly detection method
for gas turbines based on single-condition training with zero-fault
sample[ J]. Mechanical Systems and Signal Processing,2025,224 .
112209.
LIU D,ZHONG S,LIN L,et al. CSiamese : A novel semi-supervised
anomaly detection framework for gas turbines via reconstruction
similarity[ J]. Neural Computing and Applications,2023,35(22) ;
16403 - 16427.
NOR A K M,PEDAPATI S R,MUHAMMAD M, et al. Abnormality
detection and failure prediction using explainable Bayesian deep
learning ; Methodology and case study with industrial data[ J].
Mathematics,2022,10(4) :554.
MIAO D,FENG K,XIAO Y,et al. Gas turbine anomaly detection
under time-varying operation conditions based on spectra align-
ment and self-adaptive normalization [ J ]. Sensors, 2024,
24(3) :941.
FU S,ZHONG S,LIN L,et al. A re-optimized deep auto-encoder
for gas turbine unsupervised anomaly detection[ J]. Engineering
Applications of Artificial Intelligence,2021,101:104199.
ZHAO Y,WEI S,XU X. Bearing fault diagnosis based on wavelet
adaptive threshold filtering and multi-channel fusion cross-atten-
tion neural network[ J]. Review of Scientific Instru-ments,2024 ,

95(11) :114703.

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

NARENDRA K S,PARTHASARATHY K. Identification and con-
trol of dynamical systems using neural networks[ J]. IEEE Trans-
actions on Neural Networks,1990,1(1) :4 -27.

AMIRKHANI S, TOOTCHI A, CHAIBAKHSH A. Fault detection
and isolation of gas turbine using series-parallel NARX model
[J].ISA Transactions,2022,120 ;205 - 221.

GIORGI M G D,QUARTA M. Data regarding dynamic perform-
ance predictions of an aeroengine [ J]. Data in Brief, 2020,
31:105977.

P2, B R R B 5 T R R AL AR AU R A I K 18
WiBIFFEL D). BRI : IR RIE Tl k2, 2020.

BAI Mingliang. Research on intelligent fault detection and diagno-
sis of gas turbines under the circumstance of FEW fault samples
[ D]. Harbin: Harbin Institute of Technology,2020.

EERME. BEA IR R LA BRAE B SCHEEOR DT [ D] JLat
dbr 1R ,2024.

WANG Minghui. Research on key technologies for intelligent con-
trol of combined cycle units [ D ]. Beijing: North China Electric
Power University ,2024.

RAHMOUNE M B,HAFAIFA A,KOUZOU A, et al. Gas turbine
monitoring using neural network dynamic nonlinear autoregressive
with external exogenous input modelling [ J ]. Mathematics and
Computers in Simulation,2021,179 .23 -47.
PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. Cat-
Boost; Unbiased boosting with categorical features [ C ]//32nd
Conference on Neural Information Processing System. Montreal
Canada: Curran Associates, Inc. ,2018.

SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian
optimization of machine learning algorithms [ J]. arXiv preprint
arXiv,2012:1206. 2944.

GAO R,LI R,HU M, et al. Online dynamic ensemble deep ran-
dom vector functional link neural network for forecasting [ J].
Neural Networks,2023,166:51 —69.

(L 54)



