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基于 ＮＡＲＸ 的燃气轮机声压异常检测方法

赵亚辉ꎬ王忠义ꎬ曹云鹏
(哈尔滨工程大学 动力与能源工程学院ꎬ黑龙江 哈尔滨 １５０００１)

摘　 要:随着新能源大规模接入电网ꎬ发电型燃气轮机常需频繁切换工作状态ꎬ导致故障风险上升ꎬ因此ꎬ异常检测

对燃气轮机安全运行更加重要ꎮ 针对燃气轮机异常检测问题ꎬ提出了一种基于 ＮＡＲＸ￣Ｃａｔｂｏｏｓｔ 算法的基线建模方

法ꎮ 采用 ＮＡＲＸ 建立燃气轮机声压特征信号的基线模型ꎬ引入 ＣａｔＢｏｏｓｔ 算法以增强 ＮＡＲＸ 拟合能力ꎬ并运用贝叶

斯优化对模型超参数进行寻优ꎬ最终通过实验数据验证了该融合方法在异常检测方面的有效性ꎮ 另外ꎬ将所提

ＮＡＲＸ￣Ｃａｔｂｏｏｓｔ 与基于向前回归正交最小二乘法的 ＮＡＲＸ 模型(ＮＡＲＸ￣ＦＲＯＬＳ)和集成深度随机向量函数链接网络

(Ｅｎｓｅｍｂｌｅ Ｄｅｅｐ Ｒａｎｄｏｍ Ｖｅｃｔｏｒ Ｆｕｎｃｔｉｏｎａｌ Ｌｉｎｋ ｎｅｔｗｏｒｋꎬｅｄＲＶＦＬ)方法及性能进行对比ꎮ 结果表明:ＮＡＲＸ￣ＣａｔＢｏｏｓｔ
方法对正常声压均方根值的拟合均方根误差(ＲＭＳＥ)值为 ０. ００８ ５０ꎬ拟合准确度明显优于 ＮＡＲＸ￣ＦＲＯＬＳ 与 ｅｄＲＶＦＬ
方法ꎻＮＡＲＸ￣ＣａｔＢｏｏｓｔ 方法对异常声压均方根的异常检测准确率为 ９６. ９４％ ꎬ表明通过正常声压特征数据建立基线

模型进行异常检测的可行性与准确性ꎮ

关　 键　 词:异常检测ꎻ基线建模ꎻ有外部输入非线性自回归模型ꎻＣａｔＢｏｏｓｔꎻ贝叶斯优化
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引　 言

燃气轮机作为电力、船舶、航天等工业领域的重

要动力装置ꎬ其稳定运行是系统安全与效率的首要

保障[１]ꎮ 随着风电、光伏电、生物质能等新能源的

大量接入ꎬ用于电网发电的燃气轮机面临频繁切换

工作状态的挑战[２]ꎮ 燃气轮机通常在高温高压恶

劣工况下运行ꎬ压气机叶片、轴承等关键部件容易发

生故障、退化[３ － ４]ꎮ 在这种情况下ꎬ对燃气轮机进行

有效的预测与健康管理(ＰＨＭ)尤为重要ꎮ
异常检测是预测与健康管理的第一步[５]ꎮ 目

前对于燃气轮机的异常检测有着大量研究ꎮ Ｌｉ 等
人[６]通过顺序符号方法对燃料系统进行异常检测ꎮ
Ｙｕｅ 等人[７]提出了一种基于单条件的梅尔频率映射

异常检测方法(ＭＦＭＡＤ)ꎬ实现了振动频谱图异常

检测ꎮ Ｌｉｕ 等 人[８] 提 出 了 一 种 半 监 督 框 架

ＣＳｉａｍｅｓｅꎬ实现振动信号重构与异常检测ꎮ Ｎｏｒ 等

人[９]提出了一种可解释贝叶斯深度学习模型ꎬ提高

异常检测的准确度ꎮ Ｍｉａｏ 等人[１０] 采用频谱对齐方

法ꎬ增强了神经网络异常检测的性能ꎮ Ｆｕ 等人[１１]

提出了一种重新优化深度自编码器ꎬ提高了异常检

测训练精度ꎮ Ｚｈａｏ 等人[１２] 提出了一种小波自适应

滤波和多通道融合交叉注意力神经网络的方法ꎬ实
现了燃气轮机轴承的异常检测ꎮ 然而ꎬ以上方法并

没有给出具体的基线阈值ꎬ仅通过模型自身进行异

常检测ꎬ可解释性较差ꎮ
带外部输入非线性自回归模型(Ｎｏｎｌｉｎｅａｒ Ａｕｔｏ￣

ｒｅｇｒｅｓｓｉｏｎ ＥｘｏｇｅｎｏｕｓꎬＮＡＲＸ)是 １９９０ 年提出的一种

用于非线性动态系统的识别方法[１３]ꎮ ＮＡＲＸ 作为

自回归模型(Ａｕｔｏ￣ｒｅｇｒｅｓｓｉｏｎ)在非线性系统中的变

体ꎬ目前在金融预测、系统识别、工业控制等领域得

到广泛应用ꎮ Ａｍｉｒｋｈａｎｉ 等人[１４]利用 ＮＡＲＸ 模型实

现了对单轴燃气轮机进行故障检测与隔离的动态建

模ꎮ Ｇｉｏｒｇｉ 等人[１５] 利用 ＮＡＲＸ 模型实现了航空发

动机性能预测ꎮ 白明亮[１６] 使用 ＮＡＲＸ 模型在正常

模式下提取了单轴燃气轮机的热力参数ꎬ并通过建

立阈值实现了异常检测ꎮ 王铭辉[１７] 利用 ＮＡＲＸ 模

型实现了联合循环机组控制回路状态识别ꎮ Ｒａｈ￣
ｍｏｕｎｅ 等人[１８] 借助 ＮＡＲＸ 模型预测燃气轮机振动

值ꎬ并通过预测值与实际值的残差完成异常检测ꎮ
ＮＡＲＸ 模型时延特征矩阵的拟合是 ＮＡＲＸ 模型的核

心环节ꎬ使用不同的拟合算法对模型预测能力与准

确度有很大影响ꎮ
针对现有方法的不足ꎬ本文提出了一种基于

ＮＡＲＸ 模型的发电型燃气轮机异常检测方法ꎮ 首

先ꎬ根据燃气轮机声压特征信号特性ꎬ建立对应的

ＮＡＲＸ 模型ꎻ其次ꎬ使用 Ｃａｔｂｏｏｓｔ 算法代替神经网络

对 ＮＡＲＸ 进行拟合ꎻ然后ꎬ使用贝叶斯优化算法ꎬ对
ＮＡＲＸ 的时延系数和 ＣａｔＢｏｏｓｔ 模型进行参数寻优ꎮ
最后ꎬ利用实机数据验证模型的拟合准确性与异常

检测能力ꎮ

１　 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 原理

１. １　 ＮＡＲＸ 原理

ＮＡＲＸ 是具有外源输入的非线性自回归模型ꎬ
其具体公式为:

Ｙｔ ＝ Ｆ[Ｙｔ －１ꎬ􀆺Ｙｔ －ｄｙꎬＸ ｔ －１ꎬ􀆺ꎬＸ ｔ －ｄｘ] (１)
式中:Ｙ—系统的输出值ꎻＸ—系统的输入值ꎻｔ—当前

时刻ꎻＹｔ － ｄｙ—时延 ｄｙ 的系统输出值ꎻＸ ｔ － ｄｘ—时延 ｄｘ

的系统输入值ꎻＦ—任意数学表示ꎮ
ＮＡＲＸ 的具体结构主要包括两部分:输入数据

及其时延数据和输出数据的时延数据ꎮ ＮＡＲＸ 包括

两种模式:第一种模式为开环模式ꎬ是利用输出的目

标值作为输入中输出数据的时延数据ꎬ一般适用于

单步预测ꎻ第二种模式为闭环模式ꎬ是利用输出的预

测值作为输入中输出数据的时延数据ꎬ一般适用于

多步预测ꎮ 本文是利用 ＮＡＲＸ 模型建立正常状态声

压的基线模型ꎬ因此可采用开环模式进行单步预测ꎮ
ＮＡＲＸ 拟合时ꎬ一般采用多项式函数、傅里叶级

数、神经网络结构和小波基函数等ꎬ其中ꎬ多项式函

数使用范围最广ꎬ适合低阶非线性拟合ꎬ傅里叶级数

适用于周期性信号ꎬ神经网络结构适用于复杂非线

性场合ꎮ 本文基于实际数据的相关性较低ꎬ因此考
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虑引入 ＣａｔＢｏｏｓｔ 算法以增强拟合能力ꎮ
１. ２　 ＣａｔＢｏｏｓｔ 原理

ＣａｔＢｏｏｓｔ 算 法 由 Ｙａｎｄｅｘ 公 司 在 ２０１７ 年 提

出[１９]ꎮ ＣａｔＢｏｏｓｔ 属于梯度提升决策树 ( Ｇｒａｄｉｅｎｔ
Ｂｏｏｓｔｉｎｇ Ｄｅｃｉｓｉｏｎ ＴｒｅｅꎬＧＢＤＴ)的一种ꎬ采用堆成二

叉树作为基本学习基ꎮ ＧＢＤＴ 模型可以表示为多可

决策树的加法模型:

ｆＭ(ｘ) ＝ ∑
Ｍ

ｋ ＝ １
Ｔ(ｘꎬΘｋ) (２)

式中:Ｔ(ｘ)—决策树ꎻＭ—决策树个数ꎻΘｋ—决策树

的参数ꎻｆＭ(ｘ)—ＧＢＤＴ 模型ꎮ
每次迭代过程中ꎬ都会生成新的决策树ꎬ通过最

小化损失函数来确定决策树参数ꎬ损失函数为:

Θｋ ＝ ａｒｇ ｍｉｎ∑
Ｍ

ｋ ＝ １
Ｌ(ｙｉꎬｆｋ－１(ｘ)＋ Ｔ(ｘｉꎬΘｋ)) (３)

式中:Ｌ—损失值ꎻｙｉ—训练数据的输出特征向量ꎻ
ｆｋ － １—第 ｋ － １ 棵决策树ꎻｘｉ—训练数据的输入特征

向量ꎮ
ＣａｔＢｏｏｓｔ 在 ＧＢＤＴ 的基础上ꎬ还引入了独热码

(Ｏｎｅ￣ｈｏｔ)编码ꎬ将输入特征转化为有序目标编码ꎬ
显著提高了算法的准确性与稳定性ꎮ
１. ３　 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 模型

采用 ＣａｔＢｏｏｓｔ 作为 ＮＡＲＸ 模型的拟合工具ꎬ
ＮＡＲＸ 根据输入时延、输出时延和拟合基函数将生

成待拟合的矩阵方程作为 ＣａｔＢｏｏｓｔ 的输入数据ꎬ利
用 ＣａｔＢｏｏｓｔ 算法进行拟合ꎮ ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 结构

图ꎬ如图 １ 所示ꎮ 其中ꎬｘ１ ( ｔ)为 ｔ 时刻的第 １ 个输

入ꎬｘｎ( ｔ)为 ｔ 时刻的输入ꎬｙ( ｔ)为 ｔ 时刻的输出ꎬｄｘｎ

为第 ｎ 个输入的时延系数ꎬｄｙ 为输出的时延系数ꎬｙ^
( ｔ)为 ｔ 时刻的输出预测值ꎮ

图 １　 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 结构图

Ｆｉｇ. １ ＮＡＲＸ ￣ＣａｔＢｏｏｓｔ ｓｔｒｕｃｔｕｒｅ ｄｉａｇｒａｍ

在 ＮＡＲＸ 中ꎬ输入与输出的时延系数会对 ＮＡＲＸ
模型的拟合效果产生较大影响ꎬ同时 ＣａｔＢｏｏｓｔ 对学习

率、网络层数等参数较为敏感ꎬ因此ꎬ进行参数寻优是

必要的ꎮ 贝叶斯优化是由 Ｓｎｏｅｋ 等人[２０]在 ２０１２ 年提

出的超参数优化算法ꎬ适用于超参数寻优ꎮ

对于 ＮＡＲＸ 模型中的时延系数、多项式维度和

ＣａｔＢｏｏｓｔ 中的决策树数量、学习率、单棵树深度、Ｌ２
正则化系数进行贝叶斯优化ꎬ具体优化流程如图 ２
所示ꎮ

图 ２　 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 贝叶斯优化流程图

Ｆｉｇ. ２ ＮＡＲＸ ￣ＣａｔＢｏｏｓｔ Ｂａｙｅｓｉａｎ ｏｐｔｉｍｉｚａｔｉｏｎ ｆｌｏｗｃｈａｒｔ

步骤 １:给定 ＮＡＲＸ 的输入时延系数 ｄｘ、输出时

延系数 ｄｙ、多项式级数(ｄｅｇｒｅｅ)和 ＣａｔＢｏｏｓｔ 模型的

最大决策树数量 ( ｉｔｅｒａｔｉｏｎｓ)、 学习率 ( ｌｅａｒｎｉｎｇ ＿
ｒａｔｅ)、单棵树最大深度(ｄｅｐｔｈ)、Ｌ２ 正则化系数(Ｌ２＿
ｌｅａｆ＿ｒｅｇ)超参数范围ꎻ

步骤 ２:在给定超参数空间中随机选取超参数ꎬ
根据超参数生成 ＮＡＲＸ 模型ꎬ形成包括输入时延

项、输出时延项构成的多项式矩阵ꎻ
步骤 ３:根据超参数生成 ＣａｔＢｏｏｓｔ 模型ꎬ使用步

骤 ２ 中的多项式矩阵作为输入ꎬ训练 ＣａｔＢｏｏｓｔ 模型ꎻ
步骤 ４:以 ＮＡＲＸ 模型的预测值与实际值的均

方根误差(ＲＭＳＥ)为指标ꎬ计算贝叶斯损失函数ꎬ
ＲＭＳＥ 公式为:

ＲＭＳＥ ＝ １
ｍ∑

ｍ

ｉ ＝ １
(ｙｉ － ｙ^ｉ) ２ (４)

式中:ｍ—样本个数ꎻｙｉ—第 ｉ 个数据点的真实值ꎻ
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ｙ^ｉ—第 ｉ 个数据点的预测值ꎮ
步骤 ５:更新 ＮＡＲＸ 模型和 ＣａｔＢｏｏｓｔ 模型ꎻ
步骤 ６:判断是否满足均方根误差最大值或者

达到最大迭代次数ꎮ 若满足ꎬ则返回最优超参数ꎬ若
不满足ꎬ则返回步骤二迭代ꎮ

２　 实验数据采集与处理

２. １　 数据采集

本文使用的实机数据来源于燃气轮机台架试

验ꎬ其传感器安装位置如图 ３ 所示ꎮ

图 ３　 传感器安装位置示意图

Ｆｉｇ. ３ Ｓｃｈｅｍａｔｉｃ ｄｉａｇｒａｍ ｏｆ ｓｅｎｓｏｒ ｉｎｓｔａｌｌａｔｉｏｎ ｐｏｓｉｔｉｏｎ

声压传感器安装在箱装体上ꎬ一个正对着低压压

气机ꎬ一个正对着高压压气机ꎮ 传感器为杭州新声电

容传声器传感器ꎬ型号为 ＣＨ２３１２ 高声压级传声器ꎬ
主要包含 １ / ４ 英寸驻极体传声器及 １ / ４ 英寸前置放

大器ꎮ 其中ꎬ１ / ４ 英寸驻极体传声器主要技术参数

为:自由场频率响应为 ６. ３ ~ ２０ ０００ Ｈｚꎬ频响标准符

合 ＩＥＣ１０９４￣４ 频响标准ꎬ灵敏度为 ０. ６４ ｍＶ / Ｐａꎮ １ / ４
英寸前置放大器主要参数:４ ｍＡ 直流供电ꎬＳＭＢ 接

头输出ꎬ长度为 ５８ ｍｍꎬ输入阻抗为 １０ Ｇ 欧姆ꎬ输出

阻抗为 １１０ 欧姆ꎬ最大输入信号电压为 ３. ５ Ｖｒｍｓꎬ频率

范围为 １０ ~１１０ ０００ ｋＨｚꎬ最高测试声压级为 １７０ ｄＢꎮ
实验所用的信号采集系统通过 ＬａｂＶＩＥＷ 软件

进行声压信号的采集、存储和特征提取ꎬ其中提取的

特征包括时域信号的均方根值、最大值、峭度ꎬ频域

信号的转频及倍频、叶片通过频率ꎮ
均方根值是数据在采样间隔中的有效值ꎬ可以

体现数据的真实变化ꎬ其公式为:

ＸＲＭＳ ＝ ∑
Ｎ

ｉ ＝ １

Ｘ２
ｉ

Ｎ (５)

式中:ＸＲＭＳ—均方根值ꎻＮ—采样周期内采样点数ꎻ
Ｘ ｉ—采样点值ꎮ

最大值体现的是数据能量的上限以及信号的波

动情况ꎬ最大值公式为:
Ｘｍａｘ ＝ {Ｘ１ꎬＸ２ꎬ􀆺ＸＮ} (６)
峭度 κ 是用于描述数据的分布情况的指标之

一ꎬ可以体现数据极端值的分布状态ꎬ其中正态分布

的峭度为 ３ꎬ峭度公式为:
κ ＝ μ４ / σ４ (７)

式中:μ４—第四中心距ꎬ即 Ｅ[(Ｘ － μ)４]ꎬＥ 为数学期

望ꎻμ—均值ꎻσ—标准差ꎬ即 σ ＝ Ｅ[(Ｘ － μ)２] ꎮ
燃气轮机作为一种大型的旋转设备ꎬ在运行过

程中会产生包含转频及其倍频、分频的特征信号ꎬ这
些特征可作为故障诊断的重要指标ꎮ 因此ꎬ在 Ｌａｂ￣
ＶＩＥＷ 中插入快速傅里叶变换(ＦＦＴ)模块ꎬ对原始

的声压信号进行频域变换ꎬ并根据转速提取其转频

及倍频特征ꎬ其中转频 ｆｒ 的公式为:
ｆｒ ＝ ｎ / ６０ (８)

式中:ｎ—转速ꎬｒ / ｍｉｎꎮ
叶片通过频率 ｆＢＰＦ是由流体激振力产生的特定

振动现象ꎬ可通过分析叶片通过频率的变化来研究

叶片状态ꎬ其公式为:
ｆＢＰＦ ＝ ｎ􀅰Ｚ / ６０ (９)

式中:Ｚ—该级叶片的叶片数ꎮ
２. ２　 数据预处理

由于实际数据存在噪音污染ꎬ因此需要对输入模

型的所有数据进行滤波处理ꎮ ＳＧ(Ｓａｖｉｔｚｋｙ￣Ｇｏｌａｙ)滤
波是一种通用滤波方法ꎬ既能抑制噪声ꎬ又能保留信

号原本的特征ꎬ因此对所有特征信号进行 ＳＧ 滤波ꎬ
并通过优化算法优化滤波参数ꎬ实现数据降噪ꎬ其流

程如图 ４ 所示ꎮ

图 ４　 ＳＧ 滤波流程图

Ｆｉｇ. ４ ＳＧ ｆｉｌｔｅｒｉｎｇ ｆｌｏｗｃｈａｒｔ

在滤波之后对原始数据进行切分ꎬ生成训练集

和验证集ꎬ两部分占比分别为 ８０％ 和 ２０％ ꎮ 同时ꎬ
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在数据中生成异常数据集ꎬ用来验证基线模型对异

常数据的检测能力ꎮ
在离线状态下对正常状态下的燃气轮机声压特

征信号进行建模ꎬ具体流程为:
步骤 １:对特征数据进行自相关性分析ꎬ给定对

应特征值输出时延系数 ｄｙ 的取值范围ꎻ
步骤 ２:对低压压气机转速、高压压气机转速进

行分析ꎬ确定输入时延系数 ｄｘ 的取值范围ꎮ
步骤 ３:进行开环 ＮＡＲＸ 模型训练ꎬ以式(９)为

输入序列ꎬ以声压特征为输出序列ꎬ训练过程中进行

超参数优化ꎬ从而得到最佳超参数ꎻ
步骤 ４:根据步骤 ３ 中的最佳超参数ꎬ建立

ＮＡＲＸ 模型ꎬ对测试数据进行预测ꎬ并生成阈值带ꎻ
步骤 ５:利用步骤 ４ 中的模型ꎬ对异常数据进行

预测ꎬ验证阈值带对异常数据的检测情况ꎮ

３　 实验验证

３. １　 原始数据描述

本文实验数据来自 １ 台发电型燃气轮机ꎬ在测

量过程中ꎬ燃气轮机保持全工况运行状态ꎬ即包含起

机、惰转状态ꎮ 根据运行状态对正常实验数据按照

时序顺序进行划分ꎬ分为训练集和验证集ꎬ其占比分

别为 ８０％和 ２０％ ꎻ对其中的异常数据按照时序顺序

生成异常数据样本ꎮ 所有数据均通过最大值、最小

值归一化到范围(０ꎬ１)ꎮ
声压均方根正常数据如图 ５ 所示ꎬ由于所有传

感器均会受到噪声污染ꎬ因此对所有数据均进行了

ＳＧ 滤波ꎮ

图 ５　 声压均方根正常数据

Ｆｉｇ. ５ Ｎｏｒｍａｌ ｄａｔａ ｏｆ ｒｏｏｔ ｍｅａｎ ｓｑｕａｒｅ ｏｆ
ｓｏｕｎｄ ｐｒｅｓｓｕｒｅ

由图 ５ 可知ꎬＳＧ 滤波可以在保证波形原始形状

的前提下ꎬ对原始数据进行大范围滤波ꎮ 声压均方

根异常数据如图 ６ 所示ꎬ声压均方根在 ５ ４００ ｓ 时出

现异常ꎬ幅值明显高于正常数据ꎮ

图 ６　 声压均方根异常数据

Ｆｉｇ. ６ Ａｂｎｏｒｍａｌ ｄａｔａ ｏｆ ｒｏｏｔ ｍｅａｎ ｓｑｕａｒｅ ｏｆ

ｓｏｕｎｄ ｐｒｅｓｓｕｒｅ

３. ２　 ＮＡＲＸ 模型的训练与验证

依据 １. ３ 节 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 算法模型ꎬ使用 ３. １
节数据进行基线建模并验证ꎬ其中 ＮＡＲＸ 中的输入

时延系数 ｄｘ 设置为 ２ꎬ输出时延系数 ｄｙ 设置为 １ꎬ
ＮＡＲＸ 拟合所使用的基函数为多项式函数与傅里叶

函数的混合函数ꎬ基函数阶数选取范围为(１ꎬ５)ꎬ
ＣａｔＢｏｏｓｔ 最大决策树数量范围为(１ꎬ１００)ꎬ学习率范

围为(０. ０１ꎬ０. ５)ꎬ单棵树最大深度范围为(４ꎬ１０)ꎬ
Ｌ２ 正则化系数范围为(１ꎬ２０)ꎮ

训练过程中ꎬ贝叶斯优化过程损失值变化如图

７ 所示ꎮ

图 ７　 贝叶斯优化损失值变化

Ｆｉｇ. ７ Ｃｈａｎｇｅ ｉｎ Ｂａｙｅｓｉａｎ ｏｐｔｉｍｉｚａｔｉｏｎ ｌｏｓｓ
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贝叶斯优化在早期探索阶段损失值迅速下降ꎬ
在迭代 １３５ 次后基本趋于平稳状态ꎬ在最后 ６５ 次

迭代中下降极其微小ꎬ且迭代稳定次数超过 ５０ 次ꎬ
损失值下降比率较低ꎬ因此ꎬ可以认为贝叶斯优化

已经收敛ꎬ此时最大决策树数量为 ９０ꎬ学习率为

０􀆰 ２６５ ５５５ꎬ单棵树最大深度为 ９ꎬＬ２ 正则化系数为

４ꎬ基函数阶数为 ５ꎮ
图 ８ 为 ＮＡＲＸ 模型使用训练数据的预测值与真

实值的对比ꎬ其中阈值带为乘数常数 ｋ 为 ３ 的四分

位距(ＩＱＲ)阈值带ꎮ 可以观察到ꎬ拟合值与训练数

据基本重合ꎬ数据拟合的 ＲＭＳＥ 为 ０. ０００ ０２ꎬ数据拟

合的残差分布如图 ９ 所示ꎬ可以发现残差分布较为

集中ꎬ基本分布在 ± ０. ０５ 之间ꎬ可以认为 ＮＡＲＸ￣
ＣａｔＢｏｏｓｔ 模型对真实值拟合效果较好ꎮ

图 ８　 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 训练数据真实值与预测值对比

Ｆｉｇ. ８ Ｃｏｍｐａｒｉｓｏｎ ｂｅｔｗｅｅｎ ｔｒｕｅ ｖａｌｕｅ ａｎｄ ｐｒｅｄｉｃｔｅｄ
ｖａｌｕｅ ｏｆ ＮＡＲＸ￣ＣａｔＢｏｏｓｔ ｔｒａｉｎｉｎｇ ｄａｔａ

图 ９　 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 训练数据预测残差分布

Ｆｉｇ. ９ Ｒｅｓｉｄｕａｌ ｄｉｓｔｒｉｂｕｔｉｏｎ ｐｒｅｄｉｃｔｅｄ ｂｙ ＮＡＲＸ￣ＣａｔＢｏｏｓｔ
ｔｒａｉｎｉｎｇ ｄａｔａ

图 １０ 为 ＮＡＲＸ 模型使用验证数据的预测值与

真实值的对比ꎬ其中阈值带范围为 ｋ 为 ３ 的 ＩＱＲ 阈

值带ꎮ 可以观察到ꎬ模型对于训练数据的拟合效果

较好ꎬ数据拟合的 ＲＭＳＥ 为 ０. ０００ ６１ꎬ能够完整的跟

随数据的变化趋势ꎬ同时基本保证所有数据均分布

在阈值带中ꎬ数据拟合的残差分布如图 １１ 所示ꎬ基
本都在 ± ０. ０２５ 范围内ꎬ数据数量最高点在 ０. １２５
之下ꎬ可以认为模型的拟合效果较好ꎮ

图 １０　 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 验证数据真实值与预测值对比

Ｆｉｇ. １０ Ｃｏｍｐａｒｉｓｏｎ ｂｅｔｗｅｅｎ ｔｒｕｅ ｖａｌｕｅ ａｎｄ ｐｒｅｄｉｃｔｅｄ
ｖａｌｕｅ ｏｆ ＮＡＲＸ￣ＣａｔＢｏｏｓｔ ｖａｌｉｄａｔｉｏｎ ｄａｔａ

图 １１　 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 验证数据预测残差分布

Ｆｉｇ. １１ Ｒｅｓｉｄｕａｌ ｄｉｓｔｒｉｂｕｔｉｏｎ ｐｒｅｄｉｃｔｅｄ ｂｙ
ＮＡＲＸ￣ＣａｔＢｏｏｓｔ ｖａｌｉｄａｔｉｏｎ ｄａｔａ

３. ３　 ＮＡＲＸ 模型异常检测

在对 ＮＡＲＸ 模型进行训练验证优化后ꎬ得到好

的模型ꎬ利用上述异常数据对模型进行异常检测ꎮ
ＮＡＲＸ 异常检测结果如图 １２ 所示ꎬ异常检测的

ＲＭＳＥ 为 ０. ００８ ５０ꎬ异常检测的准确率为 ９６. ９４％ ꎮ
由图 １２ 可知ꎬ５ ５００ ｓ 之前的正常数据ꎬＮＡＲＸ 模型

均可以跟随ꎬ且阈值带完整包含所有正常数据ꎻ在
５ ５００ ｓ 后的异常数据ꎬＮＡＲＸ 的预测值明显低于异

常数据ꎬ且预测值较为稳定ꎬ同时 ＩＱＲ 阈值带并不

能包含异常数据ꎬ说明 ＮＡＲＸ 模型能够对此次异常

进行识别ꎬ这也说明对燃气轮机声压特征正常数据

进行建模ꎬ可以实现异常检测ꎮ
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图 １２　 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 异常数据检测效果

Ｆｉｇ. １２ Ａｂｎｏｒｍａｌ ｄａｔａ ｄｅｔｅｃｔｉｏｎ ｅｆｆｅｃｔ ｏｆ ＮＡＲＸ￣ＣａｔＢｏｏｓｔ

３. ４　 ＮＡＲＸ 模型与其他模型的比较

为了更好地体现 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 模型的优势ꎬ
本节将对 ＮＡＲＸ 模型与其他方法进行比较ꎬ包括基

于向前回归正交最小二乘法的 ＮＡＲＸ 模型(ＮＡＲＸ￣
ＦＲＯＬＳ)、集成深度随机向量函数链接网络(Ｅｎｓｅｍｂｌｅ
Ｄｅｅｐ Ｒａｎｄｏｍ Ｖｅｃｔｏｒ Ｆｕｎｃｔｉｏｎａｌ Ｌｉｎｋ ｎｅｔｗｏｒｋꎬｅｄＲＶＦＬ)ꎮ
ＮＡＲＸ￣ＦＲＯＬＳ 模型是 ＮＡＲＸ 模型最基本的模型ꎬ即
根据 ＮＡＲＸ 的时延系数ꎬ生成时延数据矩阵ꎬＦＲＯＬＳ
对数据进行拟合ꎬ得到最终的模型ꎮ 本文中 ＮＡＲＸ￣
ＦＲＯＬＳ 模型参数采用与 ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 模型相同的

参数ꎮ
ｅｄＲＶＦＬ 是一种结合了深度神经网络和集成学

习的随机化神经网络模型ꎬ通过多层特征提取增强

模型拟合效果ꎬ集成学习加快模型计算效率ꎬ提高模

型泛化能力[２１]ꎮ
ＮＡＲＸ￣ＦＲＯＬＳ 模型和 ｅｄＲＶＦＬ 模型训练数据的

拟合效果如图 １３ 所示ꎮ

图 １３　 ＮＡＲＸ￣ＦＲＯＬＳ和 ｅｄＲＶＦＬ训练数据

真实值和预测值对比

Ｆｉｇ. １３ Ｃｏｍｐａｒｉｓｏｎ ｂｅｔｗｅｅｎ ｔｒｕｅ ｖａｌｕｅ ａｎｄ ｐｒｅｄｉｃｔｅｄ ｖａｌｕｅ
ｏｆ ｔｒａｉｎｉｎｇ ｄａｔａ ｏｆ ＮＡＲＸ￣ＦＲＯＬＳ ａｎｄ ｅｄＲＶＦＬ

ＮＡＲＸ￣ＦＲＯＬＳ 模型和 ｅｄＲＶＦＬ 模型训练数据的

ＲＭＳＥ 值 分 别 为 ０. ０３３５９ 与 ０. ００１ ３６ꎮ ＮＡＲＸ￣
ＦＲＯＬＳ 模型与 ｅｄＲＶＦＬ 模型验证数据拟合效果如图

１４ 所示ꎬＮＡＲＸ￣ＦＲＯＬＳ 模型与 ｅｄＲＶＦＬ 模型的验证

数据的 ＲＭＳＥ 分别为 ０. ０１６ ３９ 与 ０􀆰 ００２ １６ꎮ

图 １４　 ＮＡＲＸ￣ＦＲＯＬＳ 和 ｅｄＲＶＦＬ 验证数据真实值

和预测值对比

Ｆｉｇ. １４ Ｃｏｍｐａｒｉｓｏｎ ｂｅｔｗｅｅｎ ｔｒｕｅ ｖａｌｕｅ ａｎｄ ｐｒｅｄｉｃｔｅｄ ｖａｌｕｅ
ｏｆ ｖａｌｉｄａｔｉｏｎ ｄａｔａ ｏｆ ＮＡＲＸ￣ＦＲＯＬＳ ａｎｄ ｅｄＲＶＦＬ

４　 结　 论

(１) ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 模型基线建模比传统方法

具有更高的准确性ꎬ其对于声压均方根值拟合的

ＲＭＳＥ 相较于其他方法相差较大ꎬ明显优于 ＮＡＲＸ￣
ＦＲＯＬＳ 模型和 ｅｄＲＶＦＬ 模型ꎮ

(２) ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 模型对声压均方根值动态

特性预测具有良好的实时性ꎬ其验证数据的误差分

布在 ± ０. ０５ 之间ꎬ为燃气轮机动态基线建模提供了

更优的方法ꎮ
(３) ＮＡＲＸ￣ＣａｔＢｏｏｓｔ 模型实现了对异常数据的

检测ꎬ检测准确率为 ９６. ９４％ ꎮ
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