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Abstract; To ensure the safe stability and economical operation of large thermal power units under deep
peak-shaving conditions, taking a 1 000 MW unit’s deep peak-shaving operation as an example, ANSYS
software was employed to conduct numerical simulations of the temperature field, stress field and life loss
of the high- and medium-pressure rotors during deep peak-shaving operation. A comparative analysis was
performed on the changes in stress amplitude between two approaches, such as reducing the variable load
rate and increasing the minimum temperatures of the main and reheat steam. Results indicate that with
the rotor structure unchanged, both reducing the load variation rate and increasing the minimum tempera-
tures of main and reheat steam can decrease rotor stress amplitude; the effect of reducing the load varia-
tion rate is relatively weaker and may constrain the unit’s flexibility ; whereas, whilst maintaining the load

variation rate constant, raising the minimum temperature of the main and reheat steam by 20 C can re-
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duce the peak stress on the rotor by 64.72 MPa, which yields a significant optimization effect.

Key words: deep peak regulation; temperature field; rotor; stress field
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Tab. 1 Physical property parameters of rotor material

X12CrMoWVNDNI10-1-1 at different temperatures

mES )
o Mo K W, mE
WRE/ R/ "
I/ X (J'kg™'+  (kg-
< GPa (Wem™'-
34 106 K1) m™)
K1)
20 218 0.311  10.1 30.0 420.0 7 824
100 212 0.305 10.7 28.8 444.6 7798
200 206 0.299  11.1 27.4 487.7 71775
300 199 0.294  11.5 26.6 541.2 7747
400 190 0.290 11.9 25.8 608. 4 7707
500 178 0.287 12.3 24.5 692.4 7 690
600 167 0.285  12.6 23.2 796.2 7 656
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Tab. 2 Grid independence verification

R WIES PIRSE KBS/ MPa AR E/ %
1 76 042 222.14 -
2 99 274 227.58 2.45
3 153 317 226.59 -0.43
4 183 992 226.01 -0.26
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Tab. 3 Validation of time step length reasonableness

WIS ML /s BOREFRN J1/MPa FHXTIR2E/%
1 100.18 227.43 -
2 89. 66 227.43 0
3 58.10 227.51 0.03
4 43.58 227.58 -0.03
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Fig. 3 Diagram of thermal boundary conditions of the rotor
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Fig. 4 Variation curve of temperature, pressure and load

factor during peak-shaving operation
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Fig.5 Temperature contour of the rotor under steady-

state operating conditions
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Fig. 6 Rotor stress field for 120 seconds of transient

peak shaving
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center on the right side of high-pressure inlet steam
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Fig. 8 Peak value variation curve of stress field
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Fig. 9 Time-dependent curves of equivalent stress

under varying load rates
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