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摘　 要:为确保大型火电机组在深度调峰条件下的安全稳定与经济运行ꎬ以某 １ ０００ ＭＷ 机组深度调峰运行为例ꎬ
采用 ＡＮＳＹＳ 软件对其深度调峰运行时高、中压转子的温度场、应力场和寿命损耗进行数值模拟计算ꎬ并对比分析

降低变负荷率和提高主、再热蒸汽最低温度两种方案的应力幅值变化ꎮ 结果表明:在转子结构不变的情况下ꎬ降低

变负荷率和提高主、再热蒸汽最低温度均可降低转子应力幅值ꎻ其中ꎬ降低变负荷率的效果相对较弱ꎬ并且会制约

机组的灵活性ꎻ而保持负荷变化率不变ꎬ提高主、再热蒸汽最低温度 ２０ ℃时ꎬ转子峰值应力可降低 ６４. ７２ ＭＰａꎬ优化

效果更为显著ꎮ
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引　 言

近年来ꎬ我国新能源发电机组快速发展ꎬ截至

２０２４ 年底ꎬ全国非化石能源发电装机容量已占总装

机容量的 ５８. ２％ [１]ꎮ 然而ꎬ风电和光伏发电的随机

性、间歇性和波动性较强ꎬ大规模并网对电网的安全

与稳定运行带来了挑战ꎮ 在此背景下ꎬ传统燃煤发

电机组在保障电网安全和提高可再生能源消纳能力

方面仍发挥着至关重要的作用ꎮ 特别是在调节电网

峰谷负荷时ꎬ新能源发电机组占比较高的地区对超

超临界机组的调峰能力提出了更高的要求[２]ꎮ

深度调峰对汽轮机组的影响主要体现在设备安

全性和运行经济性两方面ꎮ 机组参与深度调峰降至

５０％额定负荷以下时ꎬ机组经济性明显降低[３]ꎮ 文

乐等人[４]通过优化定滑压曲线和配汽方式ꎬ 对深度

调峰工况下机组性能提升进行了研究ꎮ 史进渊等

人[５]提出通过宽负荷通流优化和智能运维技术提

升机组在调峰工况下的运行效率ꎮ 王家鋆[６] 和韩

彦广等人[７]研究了 ４０％ 负荷以上调峰运行对转子

安全性的影响ꎬ发现 ４０％负荷以上主蒸汽温度变化

较小ꎬ 其 对 转 子 热 应 力 的 影 响 也 很 小ꎮ Ｂａｋｈ￣

ｍｕｔｓｋａｙａ 等人[８] 研究发现ꎬ在深度调峰降至 ２０％ 负

荷时ꎬ机组的经济性明显降低ꎬ同时主蒸汽温度变化

幅度较大ꎬ机组安全性和可靠性降低ꎮ 综上所述ꎬ目

前关于大型燃煤机组深度调峰至 ２０％ 额定负荷工

况下ꎬ不同变负荷率及主、再热蒸汽最低温度提高对

汽轮机转子温度分布及热应力变化规律的研究仍较

为有限ꎮ

本文以某 １ ０００ ＭＷ 机组汽轮机高、中压转子

为研究对象ꎬ结合 ２０％深度调峰工况下主蒸汽参数

变化情况ꎬ采用有限元方法ꎬ结合启动阶段转子表面

蒸汽参数及传热系数的计算ꎬ对调峰工况下的汽轮

机高、中压转子温度场及应力场进行数值模拟计

算ꎮ 此外ꎬ本文还通过对比同一调峰深度下不同变

负荷速率及提高主、再热蒸汽最低温度工况下转子

关键部位的应力峰值ꎬ分析了变负荷速率及提高主、

再热蒸汽最低温度对转子热应力的影响ꎬ并提出了

机组在深度调峰条件下应力峰值的优化方法ꎮ 所做

工作对于保障大型火电机组的深度调峰及机组的安

全经济运行具有一定的指导意义ꎮ

１　 模型计算

１. １　 模型研究

以某 １ ０００ ＭＷ 超超临界机组高、中压转子为

研究对象ꎬ采用二维轴对称模型进行计算分析ꎬ转子

二维几何模型如图 １ 所示ꎮ 该转子长 １１ １００ ｍｍꎬ

转子自重及蒸汽压力的影响忽略不计ꎮ

图 １　 二维转子几何模型

Ｆｉｇ. １ ２Ｄ ｒｏｔｏｒ ｇｅｏｍｅｔｒｙ ｍｏｄｅｌ

在网格划分时采用四边形 ４ 节点单元ꎬ对转子

各级间圆角和形状突变处进行局部网格加密ꎬ共划

分了单元 ９９ ２７４ 个ꎬ节点 １０５ ５６９ 个ꎬ局部网格如图

２ 所示ꎮ 该汽轮机转子所用的材料为 Ｘ１２ＣｒＭｏＷ￣

ＶＮｂＮ１０￣１￣１ꎬ其在不同温度下的物性参数如表 １

所示ꎮ

图 ２　 局部网格加密图

Ｆｉｇ. ２ Ｌｏｃａｌ ｇｒｉｄ ｅｎｃｒｙｐｔｉｏｎ ｍａｐ

􀅰４３１􀅰
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表 １　 转子材料 Ｘ１２ＣｒＭｏＷＶＮｂＮ１０￣１￣１

在不同温度下的物性参数

Ｔａｂ. １ Ｐｈｙｓｉｃａｌ ｐｒｏｐｅｒｔｙ ｐａｒａｍｅｔｅｒｓ ｏｆ ｒｏｔｏｒ ｍａｔｅｒｉａｌ

Ｘ１２ＣｒＭｏＷＶＮｂＮ１０￣１￣１ ａｔ ｄｉｆｆｅｒｅｎｔ ｔｅｍｐｅｒａｔｕｒｅｓ

温度 /

℃

弹性量 /

ＧＰａ

泊

松

比

热膨胀

系数 /

１０ － ６

热传导

系数 /

(Ｗ􀅰ｍ － １􀅰

Ｋ － １)

比热容 /

( Ｊ􀅰ｋｇ － １􀅰

Ｋ － １)

密度 /

(ｋｇ􀅰

ｍ － ３)

２０ ２１８ ０. ３１１ １０. １ ３０. ０ ４２０. ０ ７ ８２４

１００ ２１２ ０. ３０５ １０. ７ ２８. ８ ４４４. ６ ７ ７９８

２００ ２０６ ０. ２９９ １１. １ ２７. ４ ４８７. ７ ７ ７７５

３００ １９９ ０. ２９４ １１. ５ ２６. ６ ５４１. ２ ７ ７４７

４００ １９０ ０. ２９０ １１. ９ ２５. ８ ６０８. ４ ７ ７０７

５００ １７８ ０. ２８７ １２. ３ ２４. ５ ６９２. ４ ７ ６９０

６００ １６７ ０. ２８５ １２. ６ ２３. ２ ７９６. ２ ７ ６５６

在有限元仿真计算中ꎬ网格数量和时间步长对

计算成本和计算精度有较大影响ꎮ 为保证计算精度

并节省计算资源ꎬ本文对汽轮机高中压转子有限元

模型分别进行网格无关性验证和时间步长合理性

验证ꎮ 针对网格无关性验证ꎬ共划分了 ７６ ０４２ꎬ
９９ ２７４ꎬ１５３ ３１７ 和 １８３ ９９２ ４ 套网格ꎬ以最大等效应

力作为无关性验证参数ꎬ计算结果如表 ２ 所示ꎮ 由

表 ２ 可以看出ꎬ随着网格数量的增加ꎬ相对误差绝对

值逐渐减小ꎬ最大等效应力趋于稳定ꎬ由于第 ３ 套网

格与第 ２ 套网格的相对误差绝对值已小于 １％ ꎬ考
虑到计算精度及计算成本ꎬ本文选择第 ２ 套网格进

行后续仿真计算ꎮ

表 ２　 网格无关性验证

Ｔａｂ. ２ Ｇｒｉｄ ｉｎｄｅｐｅｎｄｅｎｃｅ ｖｅｒｉｆｉｃａｔｉｏｎ

网格方案 网格数 最大等效应力 / ＭＰａ 相对误差 / ％

１ ７６ ０４２ ２２２. １４ － 　

２ ９９ ２７４ ２２７. ５８ ２. ４５

３ １５３ ３１７ ２２６. ５９ － ０. ４３

４ １８３ ９９２ ２２６. ０１ － ０. ２６

注:表中“ － ”表示无数据ꎮ

时间步长分别选取 １００. １８ꎬ８９. ６６ꎬ５８. １０ 和

４３􀆰 ５８ ｓꎬ计算结果如表 ３ 所示ꎮ 由表 ３ 可知ꎬ最大

等效应力结果差异很小ꎬ选择 ８９. ６６ ｓ 为时间步长

可以保证在计算稳定性和精度的前提下ꎬ计算量

最小ꎮ

表 ３　 时间步长合理性验证

Ｔａｂ. ３ Ｖａｌｉｄａｔｉｏｎ ｏｆ ｔｉｍｅ ｓｔｅｐ ｌｅｎｇｔｈ ｒｅａｓｏｎａｂｌｅｎｅｓｓ

方案 时间步长 / ｓ 最大等效应力 / ＭＰａ 相对误差 / ％

１ １００. １８ ２２７. ４３ －

２ ８９. ６６ ２２７. ４３ ０

３ ５８. １０ ２２７. ５１ ０. ０３

４ ４３. ５８ ２２７. ５８ － ０. ０３

注:表中“ － ”表示无数据ꎮ

１. ２　 数学模型与边界条件

１. ２. １　 数学模型

根据转子的结构特点ꎬ转子表面的传热系数可

分为汽封、光轴、叶轮两侧和轮缘 ４ 个部分ꎬ采用经

验公式计算[９]ꎮ
(１) 汽封部位

表面传热系数 ｈｓ 的计算公式如式(１)所示:

ｈｓ ＝
Ｎｕｓλ
２δ (１)

其中:

Ｎｕｓ ＝ ０. ０４３ δ
Ｈ( )

０. ３ δ
Ｓ( )

０. ２
Ｒｅ０. ８ｓ (２)

Ｒｅｓ ＝ (ｗｚ２δ) / ν (３)
式中:Ｎｕｓ—汽封部位的努塞尔数ꎻλ—蒸汽的导热

系数ꎬＷ / (ｍ􀅰Ｋ)ꎻδ—轴与齿顶的距离ꎬｍꎻＨ—轴与

齿底的距离ꎬｍꎻＳ—汽封中相邻两齿间的距离ꎬｍꎻ
Ｒｅｓ—汽封部位的雷诺数ꎻｗｚ—缝隙中的平均汽流速

度ꎬｍ / ｓꎻν—蒸汽的运动黏度系数ꎬｍ２ / ｓꎮ
公式中的定性温度取汽封前后蒸汽的平均温度ꎮ
(２) 叶轮部位

轮面的传热系数 ｈｉｍｐ采用在壳中旋转轮盘的经

验公式ꎬ即:

ｈｉｍｐ ＝
Ｎｕｉｍｐλ
Ｒｂ

(４)

对于不同雷诺数ꎬ叶轮部位的 Ｎｕｉｍｐ有不同的计

算公式:

Ｎｕｉｍｐ ＝
０. ６７５Ｒｅ０. ５ｉｍｐ Ｒｅｉｍｐ < ２. ４ × １０５

０. ０２１ ７５Ｒｅ０. ８ｉｍｐ Ｒｅｉｍｐ≥２. ４ × １０５{ (５)

其中:
Ｒｅｉｍｐ ＝ (ｕｂ × Ｒｂ) / ν (６)

式中:Ｒｂ—叶轮外半径ꎬｍꎻｕｂ—叶轮外半径 Ｒｂ处的

圆周速度ꎬｍ / ｓꎻＲｅｉｍｐ—叶轮部位的雷诺数ꎮ
(３) 光轴ꎬ轮缘部位

对于无汽封装置的光轴段ꎬ该处的蒸汽流速较

低ꎬ可以近似采用光滑旋转圆柱表面的传热系数ꎬ即
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光轴传热系数 ｈａ 为:

ｈａ ＝
Ｎｕａλ
Ｒａ

(７)

其中:
Ｎｕａ ＝ ０. １Ｒｅ０. ６８ｆ (８)
Ｒｅａ ＝ (ｕａＲａ) / ν (９)

式中:Ｎｕａ—光轴部位的努塞尔数ꎻＲａ—光轴外半

径ꎬｍꎻＲｅａ—光轴部位的雷诺数ꎻｕａ—光轴外半径 Ｒａ

处的圆周速度ꎬｍ / ｓꎮ
１. ２. ２　 边界条件

对转子进行温度场分析时ꎬ轴的通流区域外表

面与蒸汽的换热被视为第三类边界条件ꎬ传热系数

通过经验公式求得ꎬ蒸汽温度取运行参数[１０ － １１]ꎻ转
子左右端面与空气的传热系数较小ꎬ该截面的热流

量基本可以忽略不计ꎬ因此设为绝热边界[１２ － １３]ꎻ转
子左右轴承和轴承座由于受到润滑油的影响ꎬ设为

第一类边界条件ꎮ 由于整个转子的轴对称性ꎬ中心

边界设为绝热边界[１４ － １５]ꎮ 热边界条件设定如图 ３
所示ꎮ 根据公式计算ꎬ可分别获得转子表面汽封、叶
轮、光轴、轮缘的传热系数数值[１６]ꎮ

图 ３　 转子热边界条件图

Ｆｉｇ. ３ Ｄｉａｇｒａｍ ｏｆ ｔｈｅｒｍａｌ ｂｏｕｎｄａｒｙ ｃｏｎｄｉｔｉｏｎｓ ｏｆ ｔｈｅ ｒｏｔｏｒ

１. ３　 计算工况

汽轮机组深度调峰的负荷是从 １ ０００ ＭＷ 降至

２００ ＭＷꎬ满负荷至 ３０％ 负荷的负荷变化率参考本

机组滑参数运行曲线ꎬ ３０％负荷到 ２０％负荷变化率

为每分钟 ４％额定负荷ꎮ 图 ４ 为调峰运行过程中温

度、压力和负荷率随时间的变化曲线ꎮ

图 ４　 调峰运行过程中温度、压力和负荷率的变化曲线

Ｆｉｇ. ４ Ｖａｒｉａｔｉｏｎ ｃｕｒｖｅ ｏｆ ｔｅｍｐｅｒａｔｕｒｅꎬ ｐｒｅｓｓｕｒｅ ａｎｄ ｌｏａｄ
ｆａｃｔｏｒ ｄｕｒｉｎｇ ｐｅａｋ￣ｓｈａｖｉｎｇ ｏｐｅｒａｔｉｏｎ

２　 计算结果分析

２. １　 应力结果分析

汽轮机转子的传热系数为空间和时间的函数ꎮ
在汽轮机组调峰过程中ꎬ采用上述传热系数的计算

方法计算转子表面叶轮两侧、光轴和汽封的传热系

数ꎬ并将计算结果施加于 ＡＮＳＹＳ 软件中ꎮ 经计算ꎬ
汽封处的传热系数最大ꎬ原因为流经汽封处的蒸汽

流速很高ꎬ流经汽封表面时对流传热强[１７ － １８]ꎮ
机组满负荷运行时ꎬ转子的温度场分布如图 ５

所示ꎮ 由图 ５ 可知ꎬ转子通流区域最高温度为

６０２􀆰 ７１ ℃ꎬ位于高压和中压转子第一级轮缘处ꎮ 整

体来看ꎬ转子温度分布沿轴向呈依次递减的趋势ꎬ高
压转子前三级以及中压转子前两级出现较高的温度

分布ꎮ

图 ５　 转子稳态工况温度云图

Ｆｉｇ. ５ Ｔｅｍｐｅｒａｔｕｒｅ ｃｏｎｔｏｕｒ ｏｆ ｔｈｅ ｒｏｔｏｒ ｕｎｄｅｒ ｓｔｅａｄｙ￣
ｓｔａｔｅ ｏｐｅｒａｔｉｎｇ ｃｏｎｄｉｔｉｏｎｓ

转子在调峰运行 １２０ ｓ 时的应力场分布如图 ６
所示ꎮ 由图 ６ 可知ꎬ转子最大应力值为 ２２７. ７１
ＭＰａꎬ位于高压进汽口右侧的圆角处ꎮ 其原因在于ꎬ
转子位置靠近高压进汽口ꎬ压力接近主蒸汽压力且

蒸汽流速很快ꎬ因此放热系数较大ꎬ热交换迅速ꎬ使
该位置的等效应力达到最大值ꎮ 根据以往经验ꎬ等
效应力峰值也位于该处ꎬ因此ꎬ后续分析将重点比较

该位置的应力值变化ꎮ

图 ６　 瞬态调峰运行过程中 １２０ ｓ 的转子应力场

Ｆｉｇ. ６ Ｒｏｔｏｒ ｓｔｒｅｓｓ ｆｉｅｌｄ ｆｏｒ １２０ ｓｅｃｏｎｄｓ ｏｆ ｔｒａｎｓｉｅｎｔ
ｐｅａｋ ｓｈａｖｉｎｇ

图 ７ 和图 ８ 分别为深度调峰过程中高压进汽右

侧圆角表面与中心温度变化曲线和等效应力最大值

点变化曲线ꎬ 从图中可以看出ꎬ在机组从 １００％负荷

降至 ３０％负荷的过程中ꎬ高压进汽右侧圆角表面温
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度约为 ５１５. ２２ ℃ꎬ中心温度约为 ４９７. ４８ ℃ꎬ温度变

化并不明显ꎮ 转子的最大等效应力从 ２２７. ４６ ＭＰａ
增加到 ２３７. ０６ ＭＰａꎬ等效应力值变化很小ꎮ 在机组

负荷从 ３０％降至 ２０％过程中ꎬ高压进汽右侧圆角表

面温度从 ５１５. ２２ ℃ 降至 ４８５. ５７ ℃ꎬ中心温度从

４９７. ４８ ℃降至 ４９６ ℃ꎬ中心温度下降速度缓慢ꎮ 同

时ꎬ最大等效应力从 ２３７. ０６ ＭＰａ 增大到 ４１８. ８４
ＭＰａꎬ等效应力值变化明显ꎮ 此时汽轮机组进入稳

态运行ꎬ随着时间推移ꎬ转子表面温度与中心温度持

续降低ꎻ等效应力峰值先在短时间增大到 ４２４. ９７
ＭＰａꎬ随后逐渐下降ꎮ 分析其原因ꎬ在负荷从 １００％
降至 ３０％的阶段ꎬ蒸汽压力下降明显ꎬ但蒸汽温度

几乎不变ꎬ尽管此时蒸汽与转子表面的传热系数变

化剧烈ꎬ但是由于蒸汽温度几乎不变ꎬ两者换热很

少ꎬ转子温度场和热应力场变化不大ꎻ而负荷由

３０％降至 ２０％ 的阶段ꎬ蒸汽压力和温度均下降明

显ꎬ蒸汽与转子表面的传热系数变化剧烈ꎬ两者间传

热剧烈ꎬ转子温度场和热应力场变化明显ꎮ

图 ７　 高压进汽右侧圆角表面与中心温度变化曲线

Ｆｉｇ. ７ Ｔｅｍｐｅｒａｔｕｒｅ ｖａｒｉａｔｉｏｎ ｃｕｒｖｅ ｏｆ ｆｉｌｌｅｔ ｓｕｒｆａｃｅ ａｎｄ
ｃｅｎｔｅｒ ｏｎ ｔｈｅ ｒｉｇｈｔ ｓｉｄｅ ｏｆ ｈｉｇｈ￣ｐｒｅｓｓｕｒｅ ｉｎｌｅｔ ｓｔｅａｍ

图 ８　 应力场峰值变化曲线图

Ｆｉｇ. ８ Ｐｅａｋ ｖａｌｕｅ ｖａｒｉａｔｉｏｎ ｃｕｒｖｅ ｏｆ ｓｔｒｅｓｓ ｆｉｅｌｄ

２. ２　 寿命损耗分析

调峰升负荷过程及启动过程中热应力在转子表

面表现为压应力ꎬ调峰降负荷过程及停机过程中热

应力在转子表面表现为拉应力[４]ꎮ 因此ꎬ汽轮机调

峰升负荷和调峰降负荷过程、启动和停机过程的应

力构成了一个完整的应力循环ꎬ转子在交变应力下

会出现疲劳现象ꎬ且属于低周疲劳[１９]ꎮ 保守假设以

应力幅值 ４２４. ９７ ＭＰａ 作为应力循环幅值ꎬ按照

Ｍａｎｓｏｎ—Ｃｏｆｆｉｎ 公式和 Ｍｉｎｅｒ 疲劳损伤线性累计法

则ꎬ计算得到一次完整深度调峰过程的寿命损耗约

为 ０. ００１ ３４２％ [２０]ꎬ计算公式如下:
Δεｔ

２ ＝
Δεｅ

２ ＋
Δεｐ

２ ＝
σ′ｆ
Ｅ (２Ｎｆ) ｂ ＋ ε′ｆ(２Ｎｆ) ｃ (１０)

ϕｆ ＝ ∑ ｉ

ｎｉ

Ｎｉ
(１１)

式中:Δεｔ / ２—应变幅值ꎻΔεｅ / ２—弹性应变ꎻΔεｐ / ２—
塑性应变ꎻＥ—弹性模量ꎻＮｆ—失效循环数ꎻε′ｆꎬσ′ｆꎬ
ｂꎬｃ—疲劳强度系数、疲劳塑性系数、疲劳强度指数

和疲劳塑性指数ꎬ反映了材料的疲劳特性ꎻｎｉ—转子

材料在循环应力幅 σｉ或应变幅 εｉ作用下的实际循环

数ꎻＮｉ—在循环应力幅σｉ或应变幅 εｉ作用下的材料失

效循环数ꎻϕｆ—疲劳寿命损耗值ꎬ当 ϕｆ ＝ ０ 时认为材

料处于全新状态ꎬ当ϕｆ ＝１ 时认为材料发生失效破坏ꎮ

３　 峰值应力优化

在转子结构不变的情况下ꎬ影响转子应力值的

热力学因素包括温度变化率和温度变化量:当温度

变化量相同时ꎬ温度变化率越大ꎬ峰值应力越高ꎻ当
温度变化率相同时ꎬ温度变化量越大ꎬ峰值应力也越

大ꎮ 因此ꎬ可通过调节温度变化率和温度变化量来

减小峰值应力ꎬ实现调峰优化ꎮ
３. １　 不同变负荷率下的应力分析

在汽轮机调峰运行中ꎬ可通过降低负荷变化率

来减小应力峰值ꎮ 由于机组从满负荷降至 ３０％ 负

荷时应力峰值变化很小ꎬ所以仅优化 ３０％ 负荷到

２０％负荷阶段即可ꎮ 本研究将其负荷变化率分别每

分钟降低 ３％ ꎬ２％ ꎬ１. ５％和 ０. ５％的额定负荷ꎬ使满

负荷降至 ２０％ 负荷所需时间分别延长了 ５０ꎬ１５０ꎬ
２５０ 和 １ ０５０ ｓꎮ 计算得到应力随时间变化曲线如图

９ 所示ꎮ
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图 ９　 不同负荷变化率下等效应力随时间变化曲线

Ｆｉｇ. ９ Ｔｉｍｅ￣ｄｅｐｅｎｄｅｎｔ ｃｕｒｖｅｓ ｏｆ ｅｑｕｉｖａｌｅｎｔ ｓｔｒｅｓｓ

ｕｎｄｅｒ ｖａｒｙｉｎｇ ｌｏａｄ ｒａｔｅｓ

　 　 由图 ８ 和图 ９ 可知ꎬ每分钟负荷变化率为 ４％ ꎬ
３％ ꎬ２％ ꎬ１. ５％ 和 ０. ５％ ꎬ等效应力的峰值分别为

４２４. ９７ꎬ４２４􀆰 ８９ꎬ４２４. ７５ꎬ４２４. ７１ 和 ４２２. ２４ ＭＰａꎬ变
负荷率对应力峰值的影响很小ꎮ 其原因在于ꎬ减小

变负荷率的实质是为了降低其温度变化率ꎬ从而减

小内部温度梯度及热应力ꎮ 上述每分钟负荷变化

率对应的温度变化率分别为每分钟 ２４ꎬ１８ꎬ１２ꎬ９ 和

３ ℃ꎬ温度变化率仍然很大ꎬ如果继续降低变负荷

率ꎬ会大幅增加调峰时间ꎬ不满足实际汽轮机组调峰

运行情况ꎮ
３. ２　 降低温度变化量应力分析

为了改变温度变化量ꎬ变负荷率统一用每分钟降

低 ４％额定负荷ꎬ通过改变调峰过程中主、再热蒸汽

温度的降幅ꎬ将主蒸汽温度的最低温度分别提高 １０
和 ２０ ℃ꎬ计算得到应力随时间变化曲线如图 １０
所示ꎮ

图 １０　 提高不同温度降幅下等效应力随时间变化曲线

Ｆｉｇ. １０ Ｔｉｍｅ￣ｄｅｐｅｎｄｅｎｔ ｃｕｒｖｅｓ ｏｆ ｅｑｕｉｖａｌｅｎｔ ｓｔｒｅｓｓ

ｂｙ ｉｎｃｒｅａｓｉｎｇ ｄｉｆｆｅｒｅｎｔ ｔｅｍｐｅｒａｔｕｒｅ ａｍｐｌｉｔｕｄｅｓ

由图 １０ 可知ꎬ主、再热蒸汽最低温度提高 １０ ℃
时的应力峰值为 ３９２. ４６ ＭＰａꎬ主蒸汽最低温度提高

２０ ℃ 时的应力峰值为 ３６０. ２５ ＭＰａꎮ 应力峰值与原

工况相比分别降低了 ３２. ５１ 和 ６４. ７２ ＭＰａꎬ应力峰

值降低非常明显ꎮ 其原因在于温度变化量的减小ꎮ
通过分析将主蒸汽最低温度提高 ２０ ℃ꎬ应力幅值下

降最明显ꎬ寿命损耗可忽略不计(转子峰值应力降

低ꎬ转子寿命损耗减少)ꎬ因此ꎬ该方案在保证转子

安全前提下ꎬ能满足汽轮机组灵活运行要求ꎮ
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４　 结　 论

本文对某 １ ０００ ＭＷ 机组汽轮机高、中压转子

的温度场、应力场及寿命损耗进行了数值仿真计算ꎬ
通过对计算结果的对比分析ꎬ得出如下结论:

(１) 计算结果表明ꎬ在深度调峰运行时ꎬ汽轮机

高压转子进汽口右侧的圆角处会出现显著的应力集

中现象ꎬ在机组检修期间应重点对该位置进行详细

检查ꎮ
(２) 机组频繁的调峰运行会导致汽轮机高中压

转子应力的周期性变化ꎬ进而使转子产生明显的疲

劳损伤ꎮ
(３) 在深度调峰运行过程中ꎬ减小蒸汽温度变

化率和降低温度变化幅度均有助于降低转子应力幅

值ꎮ 其中ꎬ减少温度变化率的效果相对较弱ꎬ并且会

制约机组的灵活性ꎻ而在保持负荷变化率不变的前

提下ꎬ将主、再热蒸汽最低温度提高 ２０ ℃ꎬ可使转子

等效应力峰值降低 ６４. ７２ ＭＰａꎮ
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