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高温蠕变对轮盘疲劳寿命影响规律研究

曲永磊ꎬ杨铭浩ꎬ华以诺ꎬ赵铭鑫ꎬ杨连峰
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摘　 要:为探究高温蠕变对涡轮盘疲劳寿命的影响ꎬ以某型燃气轮机高温涡轮盘为研究对象ꎬ采用有限元仿真技术

构建三维数值模型ꎬ对 ３. ４ ｈ 载荷谱内循环工况下的涡轮盘进行多物理场耦合仿真ꎮ 基于仿真结果确定寿命考核

点为涡轮盘盘心和引气孔边缘处ꎬ使用史密斯 － 沃森 － 腾普(ＳＷＴ)模型和拉森 － 米勒持久方程分别预测涡轮盘的

疲劳寿命和蠕变寿命ꎬ根据线性损伤累积法得到涡轮盘疲劳 / 蠕变寿命ꎮ 结果表明:高温涡轮盘引气孔边缘处为限

寿部位ꎬ涡轮盘的疲劳寿命为 ９ ７２０. ６ ｈꎬ蠕变寿命为 ２４ ６５６. ８ ｈꎬ疲劳 / 蠕变共同作用下的寿命为 ６ ９７２. ２ ｈꎬ高温蠕

变会对涡轮盘的疲劳寿命造成显著影响ꎬ相比于涡轮盘的疲劳寿命ꎬ受高温蠕变影响的疲劳 / 蠕变寿命降低幅度达
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引　 言

高温涡轮盘是燃气轮机发动机中的关键部件ꎬ
其工作环境恶劣ꎬ往往承受着高温、大温差热负荷、
高机械负荷的共同作用ꎬ一旦发生失效ꎬ将直接影响

发动机的安全运行[１ － ２]ꎬ因此ꎬ在评估涡轮盘寿命时

需要对高温下涡轮盘材料的性能水平进行分析ꎮ
Ｃｌａｕｄｉｏ 等人[３]通过有限元仿真手段对涡轮盘

的疲劳寿命进行了预测分析ꎬ并通过实验测试对数

值预测结果进行了验证ꎮ Ａｙｙａｐｐａｎ 等人[４] 构建了

基于 Ｓ － Ｎ 曲线的涡轮盘概率寿命预测模型ꎬ对航

空发动机压气机轮盘在超速后的残余变形进行预

测ꎮ Ｗｉｔｅｋ[５]通过有限元仿真方法得到涡轮盘薄弱

部位的应力分布ꎬ使用帕里斯公式研究裂纹扩展速

率ꎬ得到了涡轮盘薄弱环节的疲劳裂纹扩展规律ꎮ
Ｍｅｎｏｎ 等人[６]研究指出涡轮盘在高温、高转速等复

杂工况下承受多轴应力ꎬ提出了一种在多轴应力状

态下确定涡轮盘孔寿命的预测模型ꎮ Ｇｅｔｓｏｖ 等人[７]

综合考虑了材料的塑性变形和蠕变效应ꎬ研究了高

温涡轮盘运行过程中的热弹性变形ꎬ并对其寿命进

行了预测ꎮ Ｙｅｈ 等人[８]研究表明晶界锯齿的存在使

得晶界处的应力集中得到缓解ꎬ提高了合金的蠕变

性能ꎮ Ｙｕａｎ 等人[９] 研究了一种新型轮盘合金在低

温和中温下的变形机制ꎬ揭示了该合金在不同温度

下的力学性能ꎮ 刘臣[１０]研究了 ＧＨ４１６９Ｇ 合金的组

织结构与蠕变行为ꎬ当应力集中值超过晶界的结合

强度时ꎬ合金会发生裂纹的萌生与扩展导致断裂ꎮ
李骏等人[１１]对涡轮叶片 － 榫头 － 轮盘的蠕变寿命

和低循环疲劳寿命进行了预测ꎬ由于榫头、榫槽部位

存在应力集中ꎬ其低循环疲劳预期寿命仅有 １０２ 次ꎮ
吕志强[１２]提出了基于拉伸应变的低循环疲劳寿命

预测模型ꎬ考虑了平均应力、应力集中和尺寸效应等

多种因素的影响ꎮ 王卫国[１３] 提出改进的 Ｗａｌｋｅｒ 应
变寿命预测模型ꎬ预测了某涡轮盘低循环疲劳寿命ꎮ
皮骏等人[１４] 提出了一种简化的 Ｗａｌｋｅｒ 寿命预测模

型ꎬ并利用该简化模型对某型号发动机涡轮盘进行

实例分析ꎮ
现有研究多集中于疲劳或蠕变的单一损伤机

制ꎬ针对涡轮盘在高温、高应力作用下的疲劳 /蠕变

耦合寿命研究相对较少ꎮ 本文针对某高温涡轮盘开

展有限元仿真分析ꎬ根据仿真结果确定涡轮盘寿命考

核点ꎬ对涡轮盘的疲劳、蠕变、疲劳 /蠕变耦合寿命进

行预测ꎬ分析了高温蠕变对涡轮盘疲劳寿命的影响ꎮ

１　 有限元仿真计算

１. １　 涡轮盘三维几何模型

本文所研究的对象为某型燃气轮机高温涡轮

盘ꎬ装配叶片数量为 ８９ꎬ三维几何模型如图 １ 所示ꎮ

图 １　 涡轮盘三维几何模型

Ｆｉｇ. １ Ｔｈｒｅｅ￣ｄｉｍｅｎｓｉｏｎａｌ ｇｅｏｍｅｔｒｉｃ ｍｏｄｅｌｓ

ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｋ

由于轮盘为旋转对称结构ꎬ综合考虑计算资源ꎬ
截取 １ / ８９ 涡轮盘模型ꎬ通过施加循环对称边界条件

进行有限元仿真分析ꎬ截取的涡轮盘模型如图 ２
所示ꎮ

图 ２　 截取的涡轮盘模型

Ｆｉｇ. ２ Ｉｎｔｅｒｃｅｐｔｅｄ ｔｕｒｂｉｎｅ ｄｉｓｋ ｍｏｄｅｌｓ

１. ２　 涡轮盘有限元网格划分

使用 Ａｎｓｙｓ Ｍｅｃｈａｎｉｃａｌ 有限元仿真软件对涡轮

盘几何模型进行网格划分ꎬ网格类型为四面体网格ꎬ
节点数为 ９０ ８２２ꎬ单元数为 ４３７ １１５ꎬ涡轮盘模型有

􀅰１４􀅰
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限元网格划分ꎬ如图 ３ 所示ꎮ

图 ３　 涡轮盘模型有限元网格划分

Ｆｉｇ. ３ Ｆｉｎｉｔｅ ｅｌｅｍｅｎｔ ｍｅｓｈ ｇｅｎｅｒａｔｉｏｎ ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｋ ｍｏｄｅｌ

１. ３　 载荷设置

为了更准确地模拟和预测涡轮盘在实际工况下

的特性ꎬ本文对涡轮盘 ３. ４ ｈ 载荷谱内的循环工况ꎬ
采用多物理场耦合仿真的方法ꎬ考虑温度载荷与离心

载荷的耦合作用下寿命预测关参数预测涡轮盘寿命ꎮ
为了模拟实际工作过程中涡轮盘受到叶片载荷

的影响ꎬ本文将涡轮叶片简化为叶片质心处的点质

量ꎬ对涡轮盘榫槽部位施加载荷ꎬ这使得仿真结果更

接近实际情况ꎬ可更准确地反映实际工作过程中涡

轮盘应力应变分布及变形情况ꎮ 涡轮叶片点质量加

载如图 ４ 所示ꎬ上方小球为叶片简化的点质量ꎬ载荷

施加位置为图中红色标记的榫槽部位ꎮ

图 ４　 涡轮叶片点质量加载

Ｆｉｇ. ４ Ｍａｓｓ ｌｏａｄｉｎｇ ａｔ ｔｕｒｂｉｎｅ ｂｌａｄｅ ｐｏｉｎｔ

本文所研究的涡轮盘载荷谱时长为 ３. ４ ｈꎬ其转

速包含 ３ 个水平ꎬ分别为额定转速的 １００％ Ｎ、
９７􀆰 ４％Ｎ 和 ９５. ８％Ｎꎮ 各转速在载荷谱中所占时间

为:１００％Ｎ 转速时占用 ２. ７ ｈꎬ９７. ４％ Ｎ 转速时占用

０. ３５ ｈꎬ９５􀆰 ８％Ｎ 转速时占用 ０􀆰 ３５ ｈꎬ该载荷谱包含

的循环工况如表 １ 所示ꎮ 工况 １ 指的是涡轮在载荷

谱中历经的转速水平从 ０ 到 １００％ 的循环ꎬ工况 ２
与工况 ３ 的定义方式同工况 １ꎮ

表 １　 涡轮盘一个载荷谱内的循环工况

Ｔａｂ. １ Ｃｙｃｌｅ ｃｏｎｄｉｔｉｏｎｓ ｉｎ ａ ｌｏａｄ ｓｐｅｃｔｒｕｍ ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｋ

工况 转速 / ( ｒ􀅰ｍｉｎ － １) 循环次数

１ ０ － １００％Ｎ －０ １

２ ９５. ８％Ｎ －９７. ４％Ｎ －９５. ８％Ｎ １

３ ９７. ４％Ｎ －１００％Ｎ －９７. ４％Ｎ １

高速旋转的部件承受的主要载荷形式为离心载

荷ꎬ通过对涡轮盘施加一定转速模拟离心载荷ꎮ 离

心载荷加载如图 ５ 所示ꎬ在涡轮盘盘心处创建柱坐

标系ꎬ图中黄色方块标记处为旋转中心ꎬ通过添加旋

转速度对涡轮盘施加离心载荷ꎮ 支撑条件设置如图

６ 所示ꎬ图中蓝色方块标记处为支撑施加位置ꎬ约束

涡轮盘前端面处为无摩擦支撑ꎮ

图 ５　 离心载荷加载

Ｆｉｇ. ５ Ｃｅｎｔｒｉｆｕｇａｌ ｌｏａｄ ｌｏａｄｉｎｇ

图 ６　 支撑条件设置

Ｆｉｇ. ６ Ｓｕｐｐｏｒｔ ｃｏｎｄｉｔｉｏｎ ｓｅｔｔｉｎｇ
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涡轮盘在实际工作中除了承受离心载荷外ꎬ还
承受温度载荷ꎮ 由于涡轮盘自身厚度分布不均匀ꎬ
在涡轮盘不同部分出现较大温度差ꎬ进而产生较大

的热应力ꎬ热应力计算公式如下:
σ ＝ ΔＴ􀅰α􀅰Ｅ (１)

式中:σ—热应力ꎬＭＰａꎻΔＴ—温度梯度ꎬ℃ ꎻα—热膨

胀系数ꎬ１ / ℃ ꎻＥ—弹性模量ꎬＭＰａꎮ
取涡轮盘内部截面观察涡轮盘内部的温度分布

情况ꎬ可知涡轮盘从盘心到盘缘具有从低到高的温

度梯度ꎬ温度最高的区域位于轮盘盘缘部位ꎮ

２　 涡轮盘多物理场耦合结果分析

２. １　 涡轮盘静态结构分析

为了确定涡轮盘的限寿部位ꎬ需要对涡轮盘静

态结构下的应力应变分布进行分析ꎬ从而定位最大

应力点和最大应变点ꎬ识别涡轮盘危险区域ꎮ
１００％Ｎ 转速下涡轮盘总变形云图如图 ７ 所示ꎬ

可以看出ꎬ涡轮盘具有从盘心到盘缘的形变梯度ꎬ离
盘心越远的位置ꎬ涡轮盘形变量越大ꎬ且形变量最大

点位于涡轮盘的盘缘处ꎮ 多物理场耦合总变形趋势

满足理论分析结果ꎮ

图 ７　 涡轮盘总变形云图

Ｆｉｇ. ７ Ｔｏｔａｌ ｄｅｆｏｒｍａｔｉｏｎ ｃｌｏｕｄ ｄｉａｇｒａｍ ｏｆ

ｔｕｒｂｉｎｅ ｄｉｓｋ

图 ８ 为涡轮盘最大转速下等效应力云图ꎬ如图

所示ꎬ涡轮盘最大等效应力点出现在涡轮盘盘心位

置ꎬ此处是涡轮盘主要受力点ꎬ等效应力最大值为

８８８. ７ ＭＰａꎮ 涡轮盘盘心位置的应力水平高是由于

涡轮盘在高速旋转时ꎬ其自身质量产生的离心力导

致盘心区域产生较大的拉应力ꎮ

图 ８　 涡轮盘等效应力云图

Ｆｉｇ. ８ Ｅｑｕｉｖａｌｅｎｔ ｓｔｒｅｓｓ ｃｌｏｕｄ ｄｉａｇｒａｍ ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｋ

　 　 图 ９ 为涡轮盘等效总应变云图ꎬ总应变是无量

纲量ꎬ用来衡量材料的相对变形程度ꎬ如图所示ꎬ应
变分布规律大致与应力分布情况相同ꎬ呈现从盘心

到盘缘的梯度变化ꎬ等效总应变最大点出现在轮盘

引气孔边缘处ꎬ这是由于引气孔边缘作为过渡圆弧ꎬ
会导致应力集中ꎬ从而使得该处的应变更大ꎬ并且盘

缘处温度较高ꎬ热应力较大ꎬ更容易出现应变集中

现象ꎮ

图 ９　 涡轮盘等效总应变云图

Ｆｉｇ. ９ Ｅｑｕｉｖａｌｅｎｔ ｔｏｔａｌ ｓｔｒａｉｎ ｃｌｏｕｄ ｄｉａｇｒａｍ

ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｋ

２. ２　 涡轮盘寿命考核点

涡轮盘的寿命由考核点的寿命决定ꎬ考核点一

般选取在载荷值较大、应力集中且结构复杂的位置ꎮ
根据图 ８ 和图 ９ 的应力、应变分布云图ꎬ选取涡轮盘

盘心的最大等效应力点作为考核点 Ａꎬ选取涡轮盘

引气孔边缘处最大等效应变点作为考核点 Ｂꎬ考核

点位置如图 １０ 所示ꎮ 图中 Ｍａｘ 红色方块标记位置

即为寿命考核点位置ꎮ
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图 １０　 涡轮盘寿命考核点位置示意图

Ｆｉｇ. １０ Ｐｏｓｉｔｉｏｎ ｄｉａｇｒａｍ ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｋ ｌｉｆｅ
ａｓｓｅｓｓｍｅｎｔ ｐｏｉｎｔｓ

３　 涡轮盘疲劳 /蠕变寿命分析

３. １　 涡轮盘疲劳寿命预测

低周疲劳寿命预测方法ꎬ即基于应变的疲劳分

析方法ꎬ主要考虑材料的塑性形变与疲劳寿命的关

系ꎬ通常用于分析低周疲劳问题ꎮ Ｍａｎｓｏｎ 和 Ｃｏｆｆｉｎ
两位学者提出了著名的 Ｍａｎｓｏｎ￣Ｃｏｆｆｉｎ 公式[１５]:

Δ εｅｑ

２ ＝
σ′ｆ
Ｅ (２Ｎｆ) ｂ ＋ ｄ(２ Ｎｆ) ｃ (２)

式中:Δεｅｑ / ２—应变幅值ꎻσ′ｆ—疲劳强度系数ꎻｄ—疲

劳塑性系数ꎻｂ—疲劳强度指数ꎻｃ—疲劳塑性指数ꎻ
Ｎｆ—低周疲劳循环次数ꎮ

Ｅｎｄｏｇａｎ 和 Ｒｏｂｅｒｔｓ 将 Ｍａｎｓｏｎ￣Ｃｏｆｆｉｎ 公 式 和

Ｗａｌｋｅｒ 模型结合形成了新的应变寿命预测模型:

σ１－γ
ｍａｘ σγ

ａ εａ ＝
(σ′ｆ ) ２

Ｅ (２Ｎｆ) ２ｂ ＋ σ′ｆｄ(２Ｎｆ ) ｂ＋ｃ (３)

式中:σｍａｘ—最大应力ꎻσａ—应力幅值ꎻεａ—应变幅

值ꎻγ—平均应力敏感指数ꎮ
当式(３)中的 γ ＝ ０. ５ 时就变成以 σｍａｘ和 εａ 为

控制变量的 ＳＷＴ 参数修正模型ꎬ其表达式为:

σｍａｘ εａ ＝
(σ′ｆ) ２

Ｅ (２Ｎｆ) ２ｂ ＋ σ′ｆｄ(２Ｎｆ) ｂ＋ｃ (４)

通过有限元仿真得到不同转速下涡轮盘寿命考

核点的等效应力和等效总应变ꎬ如表 ２ 所示ꎮ

使用 ＳＷＴ 参数修正模型预测疲劳寿命ꎬ需要涡

轮盘寿命考核点在各个工况下的最大应力 σｍａｘ和

εｍａｘ应变幅值 εａꎬ如表 ３ 所示ꎮ

表 ２　 不同转速下考核点的等效应力和等效总应变

Ｔａｂ. ２ Ｅｑｕｉｖａｌｅｎｔ ｓｔｒｅｓｓ ａｎｄ ｅｑｕｉｖａｌｅｎｔ ｔｏｔａｌ ｓｔｒａｉｎ
ｏｆ ａｓｓｅｓｓｍｅｎｔ ｐｏｉｎｔ ａｔ ｄｉｆｆｅｒｅｎｔ ｓｐｅｅｄｓ

转速 / ％ Ｎ 考核点 等效应力 / ＭＰａ 等效总应变 / ％

１００. ０ Ａ ８８８. ７０ ０. ５９０ ５９

Ｂ ８８２. ３０ ０. ６５２ ９１

９７. ４ Ａ ８７８. ２３ ０. ５５８ ９６

Ｂ ８４０. ７６ ０. ４８６ １４

９５. ８ Ａ ８７３. ２９ ０. ５４３ ９１

Ｂ ７７７. ７０ ０. ３９５ ５１

表 ３　 各工况下考核点的最大应力和应变幅值

Ｔａｂ. ３ Ｔｈｅ ｍａｘｉｍｕｍ ｓｔｒｅｓｓ ａｎｄ ｓｔｒａｉｎ ａｍｐｌｉｔｕｄｅｓ ｏｆ
ａｓｓｅｓｓｍｅｎｔ ｐｏｉｎｔ ｕｎｄｅｒ ｖａｒｉｏｕｓ ｗｏｒｋｉｎｇ ｃｏｎｄｉｔｉｏｎｓ

工况 考核点 σｍａｘ / ＭＰａ εａ / ％

１ Ａ ８８８. ７０ ０. ２９５ ２９５

Ｂ ８８２. ３０ ０. ３２６ ４５５

２ Ａ ８７８. ２３ ０. ００７ ５２５

Ｂ ８４０. ７６ ０. ０４５ ３１５

３ Ａ ８８８. ７０ ０. ０１５ ８１５

Ｂ ８８２. ３０ ０. ０８３ ３８５

涡轮盘材料的疲劳参数如表 ４ 所示ꎮ

表 ４　 涡轮盘材料疲劳参数

Ｔａｂ. ４ Ｆａｔｉｇｕｅ ｐａｒａｍｅｔｅｒｓ ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｋ ｍａｔｅｒｉａｌ

温度 / ℃ σ′ｆ / ＭＰａ ｂ ｄ / ％ ｃ Ｅ / ＭＰａ

２０ ２ ４３８. １ － ０. ０９８ ３６５ － ０. ８５６ ２１０ ４００

６５０ １ ４０５. ９ － ０. ０６２ ９ － ０. ５４１ １８８ ９００

对不同转速下的涡轮盘寿命考核点对应温度进

行线性插值得到的疲劳参数如表 ５ 所示ꎮ

表 ５　 不同转速下考核点疲劳参数

Ｔａｂ. ５ Ｆａｔｉｇｕｅ ｐａｒａｍｅｔｅｒｓ ｏｆ ａｓｓｅｓｓｍｅｎｔ ｐｏｉｎｔ ａｔ
ｄｉｆｆｅｒｅｎｔ ｓｐｅｅｄｓ

转速 / ％ Ｎ 考核点 σ′ｆ / ＭＰａ ｂ ｄ / ％ ｃ Ｅ / ＭＰａ

１００ Ａ １ ９２１. ３ － ０. ０８０ １８７ － ０. ６９８ １９９ ６３５

Ｂ １ ５４０. ６ － ０. ０６７ ５５ － ０. ５８２ １９１ ７０６

９７. ４ Ａ １ ９５４. ０ － ０. ０８１ １９８ － ０. ７０８ ２００ ３１７

Ｂ １ ５７３. ４ － ０. ０６８ ６７ － ０. ５９２ １９２ ３８８

９５. ８ Ａ １ ９８６. ８ － ０. ０８２ ２０９ － ０. ７１８ ２０１ ０００

Ｂ １ ６０６. １ － ０. ０６９ ７８ － ０. ６０２ １９３ ０７１
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　 　 将上述的疲劳参数代入式(４)中计算涡轮盘寿

命考核点在各个工况下的循环次数ꎬ计算结果如表

６ 所示ꎮ

表 ６　 各工况下考核点循环次数

Ｔａｂ. ６ Ｔｈｅ ｎｕｍｂｅｒ ｏｆ ｃｙｃｌｅｓ ｏｆ ａｓｓｅｓｓｍｅｎｔ ｐｏｉｎｔ ｕｎｄｅｒ
ｖａｒｉｏｕｓ ｗｏｒｋｉｎｇ ｃｏｎｄｉｔｉｏｎｓ

工况 考核点 Ａ 循环次数 考核点 Ｂ 循环次数

１ ５ ４６０ ３ ２９８

２ ８３３ ６３３ ９０ ４９６

３ ２８６ ７５９ ２８ １６３

根据考核点各工况下的循环次数可以得到对应

的损伤量ꎮ Ｐａｌｍｇｒｅｎ 在研究滚动轴承寿命时假定疲

劳损伤的积累与旋转次数成正比ꎬＭｉｎｅｒ 在此基础

之上做了进一步研究ꎬ提出了 Ｍｉｎｅｒ 线性累计法则ꎬ
如式(５)所示:

Ｄ ＝ ∑
ｋ

ｉ ＝ １

ｎｉ

Ｎｉ
(５)

式中:Ｄ—总累计损伤ꎻｋ—载荷谱中不同应力水平

的级数ꎻｎｉ—第 ｉ 级应力水平下的实际循环次数ꎻ
Ｎｉ—在第 ｉ 级应力水平下单独作用时ꎬ导致破坏所

需的总循环次数ꎮ 通常认为当总累积损伤 Ｄ ＝ １
时ꎬ材料发生疲劳失效ꎮ

结合表 ６ 中的数据得到载荷谱中各工况损伤量

如表 ７ 所示ꎮ

表 ７　 各工况下考核点损伤量

Ｔａｂ. ７ Ｄａｍａｇｅ ａｍｏｕｎｔ ｏｆ ａｓｓｅｓｓｍｅｎｔ ｐｏｉｎｔ ｕｎｄｅｒ ｖａｒｉｏｕｓ
ｗｏｒｋｉｎｇ ｃｏｎｄｉｔｉｏｎｓ

工况 考核点 Ａ 损伤量 考核点 Ｂ 损伤量

１ １. ８３１ ５ × １０ － ４ ３. ０３２ １ × １０ － ４

２ １. １９９ ６ × １０ － ６ １. １０５ ０ × １０ － ５

３ ３. ４８７ ２ × １０ － ６ ３. ５５０ ８ × １０ － ５

在该载荷谱中ꎬ各工况循环次数均为 １ 次ꎬ因此

将不同工况的损伤量代数相加即可得到总损伤ꎮ 计

算得到考核点 Ａ 总损伤为 １. ８７８ ４ × １０ － ４ꎬ考核点 Ｂ
总损伤为 ３. ４９７ ７ × １０ － ４ꎬ因此考核点 Ｂ 决定了涡轮

盘的低周疲劳寿命ꎬ得出引气孔边缘处是涡轮盘的

限寿位置ꎮ 其中ꎬ工况 １ 的损伤占比是最大的ꎬ这是

由于工况 １ 对应涡轮的起动过程ꎬ此阶段发动机转

速和燃气温度急剧变化ꎬ造成涡轮盘在此阶段的应

力值和应变幅值非常高ꎮ
若涡轮盘在后续仍继续使用该 ３. ４ ｈ 载荷谱ꎬ

则可计算得出ꎬ直至发生疲劳破坏时该涡轮盘所使

用的载荷谱次数为 ２ ８５９ 次ꎮ
其所对应的疲劳寿命为:
Ｔｆａｔｉｇｕｅ ＝ ｎｆａｔｉｇｕｅ × Ｔ０ (６)

式中:Ｔｆａｔｉｇｕｅ—疲劳寿命ꎻｎｆａｔｉｇｕｅ—计算疲劳寿命的载

荷谱使用次数ꎻＴ０—载荷谱时长ꎮ
将使用次数 ２ ８５９ 次和载荷谱时长 ３. ４ ｈ 代入

计算ꎬ得到疲劳寿命为 ９ ７２０. ６ ｈꎮ
３. ２　 涡轮盘蠕变寿命预测

目前工程上一般利用拉森 － 米勒方程(又称 Ｌ
－ Ｍ 参数法)对蠕变寿命进行预测ꎬ其基本形式为:

Ｐ(σ) ＝ Ｔ(ｌｇ ｔｒ ＋ Ｃ) (７)
式中:Ｐ(σ)—与应力相关的函数ꎬ又称 Ｌ － Ｍ 参数ꎻ
Ｔ—热力学温度ꎻｔｒ—断裂时间ꎻＣ—材料常数ꎮ

在工程方面ꎬ材料常数 Ｃ 的取值一般为 ２０ꎬ涡
轮盘材料在不同温度和持久时间下的应力极限值如

表 ８ 所示ꎬ通过表中数据可拟合 Ｌ － Ｍ 参数ꎮ

表 ８　 涡轮盘材料持久性能

Ｔａｂ. ８ Ｄｕｒａｂｉｌｉｔｙ ｐｅｒｆｏｒｍａｎｃｅ ｏｆ ｔｕｒｂｉｎｅ

ｄｉｓｋ ｍａｔｅｒｉａｌ

温度 / ℃
合金持久极限 / ＭＰａ

１００ ｈ ５００ ｈ １ ０００ ｈ ５ ０００ ｈ

６５０ ８４０ ７８０ ７４０ ６８０

７５０ ５３０ ４３０ ４００ ３２０

８００ ３４０ ３００ ２８０ ２３０

Ｌ － Ｍ 参数与材料在不同温度和持久时间下的

压力极限值的关系可以通过拟合得到ꎬ拟合多项式

形式为:
Ｐ(σ) ＝ Ａ ＋ Ｂ(ｌｇσ) ＋ Ｃ(ｌｇσ ) ２ (８)

式中:Ａ、Ｂ、Ｃ—待定系数ꎮ
使用 Ｏｒｉｇｉｎ 软件的多项式拟合功能ꎬ基于最小

二乘拟合原理求得式(８)中各待定系数的值ꎬ根据

表 ８ 中涡轮盘材料的持久寿命数据求解的多项式结

果为:
Ｐ(σ) ＝２８. ６４２ ８９ ＋４. ０３９ ３(ｌｇ σ) －２. ３１７ ２４(ｌｇ σ)２

(９)
Ｏｒｉｇｉｎ 软件拟合的 Ｌ － Ｍ 参数曲线如图 １１

所示ꎮ
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图 １１　 Ｌ －Ｍ 参数拟合曲线

Ｆｉｇ. １１ Ｌ －Ｍ ｐａｒａｍｅｔｅｒ ｆｉｔｔｉｎｇ ｃｕｒｖｅ

　 　 将 １００％额定转速下的转速、温度和等效应力

代入式(７)、式(９)中进行计算ꎬ计算得到的蠕变寿

命最低点为引气孔边缘的寿命考核点 Ｂꎬ将考核点

Ｂ 在 ３ 种转速下的数据代入式(７)最终计算得到的

不同转速下的最终蠕变寿命如表 ９ 所示ꎮ

表 ９　 不同转速下的涡轮盘蠕变寿命

Ｔａｂ. ９ Ｃｒｅｅｐ ｌｉｆｅ ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｋ ａｔ ｄｉｆｆｅｒｅｎｔ ｓｐｅｅｄｓ

转速 / ％ Ｎ 等效应力 / ＭＰａ Ｌ － Ｍ 参数 蠕变寿命 / ｈ

１００ ８８２. ３０ ２０. ４３５ １. ９９８ ７ × １０４

９７. ４ ８４０. ７６ ２０. ６３６ １. ３７０ １ × １０５

９５. ８ ７７７. ７０ ２０. ９５５ １. ４５６ ８ × １０６

通过涡轮盘 ３. ４ ｈ 载荷谱统计以上 ３ 种转速条

件下的保载时间占比ꎬ如表 １０ 所示ꎮ

表 １０　 不同转速在 ３. ４ ｈ 载荷谱保载时间

Ｔａｂ. １０ Ｌｏａｄ ｈｏｌｄｉｎｇ ｔｉｍｅ ａｔ ｄｉｆｆｅｒｅｎｔ ｓｐｅｅｄｓ ｉｎ

３. ４ ｈｏｕｒｓ ｌｏａｄ ｓｐｅｃｔｒｕｍ

转速 / ％ Ｎ 保载时间 / ｈ 保载比例 / ％

１００ ２. ７０ ７９. ４

９７. ４ ０. ３５ １０. ３

９５. ８ ０. ３５ １０. ３

根据 Ｍｉｎｅｒ 线性损伤理论可以计算得到在 ３􀆰 ４
ｈ 载荷谱中的总蠕变损伤为:

Ｄｃｒｅｅｐ ＝ ２. ７
１. ９９８ ７ × １０４ ＋ ０. ３５

１. ３７０ １ × １０５ ＋

０. ３５
１. ４５６ ８ × １０６ ≈１. ３７８ ８ × １０ －４ (１０)

若该涡轮盘在后续仍继续使用该 ３. ４ ｈ 载荷

谱ꎬ则可计算得出直至发生蠕变破坏时该涡轮盘所

使用的载荷谱次数为 ７ ２５２ 次ꎮ
其所对应的蠕变寿命为:
Ｔｃｒｅｅｐ ＝ ｎｃｒｅｅｐ × Ｔ０ (１１)

式中:Ｔｃｒｅｅｐ—蠕变寿命ꎻｎｃｒｅｅｐ—计算蠕变寿命的载荷

谱使用次数ꎮ
将使用次数 ７ ２５２ 次和载荷谱时长 ３. ４ ｈ 代入

计算得到蠕变寿命为 ２４ ６５６. ８ ｈꎮ
３. ３　 涡轮盘疲劳 /蠕变寿命预测

通过 ＳＷＴ 参数修正模型计算得到 ３. ４ ｈ 载荷

谱下的疲劳损伤 Ｄｆａｔｉｇｕｅ为 ３. ４９７ ７ × １０ － ４ꎬ通过拉森

－米勒方程对涡轮盘不同转速下的蠕变寿命的计

算ꎬ所得到的 ３. ４ ｈ 载荷谱下的蠕变损伤 Ｄｃｒｅｅｐ 为

１􀆰 ３７８ ８ × １０ － ４ꎮ 根据线性损伤累积法ꎬ该涡轮盘在

３. ４ ｈ 载荷谱下的疲劳 /蠕变总损伤为:
Ｄ ＝ Ｄｆａｔｉｇｕｅ ＋ Ｄｃｒｅｅｐ ＝ ３. ４９７ ７ × １０ －４ ＋ １. ３７８ ８ ×

１０ －４ ＝ ４. ８７６ ５ × １０ －４ (１２)
以 ３. ４ ｈ 载荷谱为标准ꎬ该涡轮盘疲劳 /蠕变对

应的小时寿命为:

Ｔ ＝ ３. ４
Ｄ ≈６ ９７２. ２ (１３)

对比涡轮盘的疲劳寿命 ９ ７２０. ６ ｈꎬ疲劳、蠕变

寿命为疲劳寿命的 ７１. ７３％ ꎬ高温蠕变对该载荷谱

下涡轮盘的疲劳寿命降低幅度达到 ２８. ２７％ ꎮ
涡轮盘引气孔边缘在高温、高应力持续作用的

环境下ꎬ其疲劳寿命会受到高温蠕变的显著影响ꎮ
涡轮盘作为燃气轮机的关键热端部件ꎬ在服役过程

中承受着由启停和持续工作的循环载荷与蠕变载荷

的共同作用ꎮ 在这样的复杂工况下ꎬ涡轮盘的材料

性能会逐渐劣化ꎬ蠕变损伤和疲劳损伤不断累积ꎬ从
而导致其疲劳寿命缩短ꎮ 因此可以推断ꎬ高温蠕变

对涡轮盘疲劳寿命的影响需要根据涡轮盘限寿部位

具体的工作条件和环境因素进行综合评估ꎮ

４　 结　 论

(１) 多物理场耦合仿真结果显示等效应力最大

点出现在涡轮盘盘心部位ꎬ等效应变最大点位于涡

轮盘引气孔边缘部位ꎬ因此选取这两个部位作为涡

轮盘的寿命考核点 Ａ 和 Ｂꎮ
(２) 选用 ＳＷＴ 参数修正模型确定涡轮盘疲劳

寿命ꎬ通过 Ｍｉｎｅｒ 线性损伤理论计算得出了考核点
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Ｂ 的疲劳损伤更大ꎬ在 ３. ４ ｈ 载荷谱下涡轮盘的疲

劳总损伤为 ３. ４９７ ７ × １０ － ４ꎬ该涡轮盘在 ＳＷＴ 参数

修正模型下的疲劳寿命为 ９ ７２０. ６ ｈꎮ
(３) 通过拉森 －米勒持久方程以及 Ｍｉｎｅｒ 线性

损伤理论计算得出了蠕变寿命最低点为考核点 Ｂꎬ
该涡轮盘在 ３. ４ ｈ 载荷谱下最大的蠕变损伤为

１􀆰 ３７８ ８ × １０ － ４ꎬ对应该涡轮盘在受到蠕变作用下的

小时寿命为 ２４ ６５６. ８ ｈꎮ
(４) 根据线性损伤累积法ꎬ该涡轮盘疲劳 /蠕变

寿命为 ６ ９７２. ２ ｈꎬ高温蠕变使该载荷谱下涡轮盘的

疲劳寿命降低幅度达到 ２８. ２７％ ꎮ

参考文献:

[１] 　 石　 亮ꎬ魏大盛ꎬ王延荣. 考虑应力梯度的轮盘疲劳寿命预测

[Ｊ] . 航空动力学报ꎬ２０１３ꎬ２８(６):１２３６ － １２４２.

ＳＨＩ ＬｉａｎｇꎬＷＥＩ ＤａｓｈｅｎｇꎬＷＡＮＧ Ｙａｎｒｏｎｇ. Ｆａｔｉｇｕｅ ｌｉｆｅ ｐｒｅｄｉｃｔｉｏｎ

ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｋ ｂａｓｅｄ ｏｎ ｓｔｒｅｓｓ ｇｒａｄｉｅｎｔ[ Ｊ] . Ｊｏｕｒｎａｌ ｏｆ Ａｅｒｏｓｐａｃｅ

Ｐｏｗｅｒꎬ２０１３ꎬ２８(６):１２３６ － １２４２.

[２] 　 ＢＯＹＤ￣ＬＥＥ Ａ ＤꎬＨＡＲＲＩＳＯＮ Ｇ ＦꎬＨＥＮＤＥＲＳＯＮ Ｍ Ｂ. Ｅｖａｌｕａｔｉｏｎ

ｏｆ ｓｔａｎｄａｒｄ ｌｉｆｅ ａｓｓｅｓｓｍｅｎｔ ｐｒｏｃｅｄｕｒｅｓ ａｎｄ ｌｉｆｅ ｅｘｔｅｎｓｉｏｎ ｍｅｔｈｏｄｏｌ￣

ｏｇｉｅｓ ｆｏｒ ｆｒａｃｔｕｒｅ￣ｃｒｉｔｉｃａｌ ｃｏｍｐｏｎｅｎｔｓ[ Ｊ] . Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ

Ｆａｔｉｇｕｅꎬ２００１ꎬ２３(Ｓ１):１１ － １９.

[３] 　 ＣＬＡＵＤＩＯ Ｒ ＡꎬＢＲＡＮＣＯ Ｃ ＭꎬＧＯＭＥＳ Ｅ Ｃꎬｅｔ ａｌ. Ｌｉｆｅ ｐｒｅｄｉｃｔｉｏｎ

ｏｆ ａ ｇａｓ ｔｕｒｂｉｎｅ ｄｉｓｃ ｕｓｉｎｇ ｔｈｅ ｆｉｎｉｔｅ ｅｌｅｍｅｎｔ ｍｅｔｈｏｄ[Ｃ] / / Ｅｉｇｈｔｈ

Ｐｏｒｔｕｇｕｅｓｅ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｆｒａｃｔｕｒｅꎬ２００２.

[４] 　 ＡＹＹＡＰＰＡＮ ＣꎬＫＵＭＡＲ ＲꎬＲＡＭＥＳＨ Ｐꎬｅｔ ａｌ. Ｅｘｐｅｒｉｍｅｎｔａｌ ａｎｄ

ｎｕｍｅｒｉｃａｌ ｓｔｕｄｙ ｔｏ ｐｒｅｄｉｃｔ ｒｅｓｉｄｕａｌ ｇｒｏｗｔｈ ｉｎ ａｎ ａｅｒｏｅｎｇｉｎｅ ｃｏｍ￣

ｐｒｅｓｓｏｒ ｄｉｓｃ ａｆｔｅｒ ｏｖｅｒｓｐｅｅｄ[ Ｊ] . Ｐｒｏｃｅｄｉａ Ｅｎｇｉｎｅｅｒｉｎｇꎬ２０１３ꎬ５５:

６２５ － ６３０.

[５] 　 ＷＩＴＥＫ Ｌ. Ｆａｉｌｕｒｅ ａｎａｌｙｓｉｓ ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｃ ｏｆ ａｎ ａｅｒｏ ｅｎｇｉｎｅ[ Ｊ] .

Ｅｎｇｉｎｅｅｒｉｎｇ Ｆａｉｌｕｒｅ Ａｎａｌｙｓｉｓꎬ２００６ꎬ１３(１):９ － １７.

[６] 　 ＭＥＮＯＮ Ｍ ＮꎬＫＡＮＴＺＯＳ Ｐ ＴꎬＧＲＥＶＩＮＧ Ｄ Ｊ. Ａｎ ｉｎｎｏｖａｔｉｖｅ ｐｒｏ￣

ｃｅｄｕｒｅ ｆｏｒ ｅｓｔａｂｌｉｓｈｉｎｇ ｌｉｆｉｎｇ ｃｒｉｔｅｒｉａ ｆｏｒ ｔｕｒｂｉｎｅ ｄｉｓｃ ｂｏｒｅｓ ｕｎｄｅｒ

ｍｕｌｔｉａｘｉａｌ ｓｔａｔｅｓ ｏｆ ｓｔｒｅｓｓ [ Ｊ] . Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ Ｆａｔｉｇｕｅꎬ

２０１１ꎬ３３(８):１１１１ － １１１７.

[７] 　 ＧＥＴＳＯＶ Ｌ ＢꎬＳＥＭＥＮＯＶ Ａ ＳꎬＩＧＮＡＴＯＶＩＣＨ Ｉ Ａ. Ｔｈｅｒｍａｌ ｆａｔｉｇｕｅ

ａｎａｌｙｓｉｓ ｏｆ ｔｕｒｂｉｎｅ ｄｉｓｃｓ ｏｎ ｔｈｅ ｂａｓｅ ｏｆ ｄｅｆｏｒｍａｔｉｏｎ ｃｒｉｔｅｒｉｏｎ[ Ｊ] .

Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｊｏｕｒｎａｌ ｏｆ Ｆａｔｉｇｕｅꎬ２０１７ꎬ９７:８８ － ９７.

[８] 　 ＹＥＨ Ａ ＣꎬＬＵ Ｋ ＷꎬＫＵＯ Ｃ Ｍꎬ ｅｔ ａｌ. Ｅｆｆｅｃｔ ｏｆ ｓｅｒｒａｔｅｄ ｇｒａｉｎ

ｂｏｕｎｄａｒｉｅｓ ｏｎ ｔｈｅ ｃｒｅｅｐ ｐｒｏｐｅｒｔｙ ｏｆ Ｉｎｃｏｎｅｌ ７１８ ｓｕｐｅｒａｌｌｏｙ[ Ｊ] .

Ｍａｔｅｒｉａｌｓ Ｓｃｉｅｎｃｅ ａｎｄ Ｅｎｇｉｎｅｅｒｉｎｇ:Ａꎬ２０１１ꎬ５３０(１):５２５ － ５２９.

[９] 　 ＹＵＡＮ ＹꎬＧＵ Ｙ ＦꎬＯＳＡＤＡ Ｔꎬｅｔ ａｌ. Ｄｅｆｏｒｍａｔｉｏｎ ｍｅｃｈａｎｉｓｍｓ ｉｎ ａ

ｎｅｗ ｄｉｓｃ ｓｕｐｅｒａｌｌｏｙ ａｔ ｌｏｗ ａｎｄ ｉｎｔｅｒｍｅｄｉａｔｅ ｔｅｍｐｅｒａｔｕｒｅｓ [ Ｊ] .

Ｓｃｒｉｐｔａ Ｍａｔｅｒｉａｌｉａꎬ２０１２ꎬ６７(２):１３７ － １４０.

[１０] 　 刘　 臣. ＧＨ４１６９Ｇ 合金的组织结构与蠕变行为[Ｄ]. 沈阳:沈

阳工业大学ꎬ２０１２.

ＬＩＵ Ｃｈｅｎ. Ｍｉｃｒｏｓｔｒｕｃｔｕｒｅ ａｎｄ ｃｒｅｅｐ ｂｅｈａｖｉｏｒｓ ｏｆ ＧＨ４１６９Ｇ

ｓｕｐｅｒａｌｌｏｙ[ Ｄ]. Ｓｈｅｎｙａｎｇ: Ｓｈｅｎｙａｎｇ Ｕｎｉｖｅｒｓｉｔｙ ｏｆ Ｔｅｃｈｎｏｌｏｇｙꎬ

２０１２.

[１１] 　 李　 骏ꎬ宋友辉ꎬ刘汉斌ꎬ等. 涡轮叶片 － 榫头 － 轮盘的蠕变

与低循环疲劳寿命预测 [ Ｊ] . 推进技术ꎬ ２０１５ꎬ ３６ ( １１ ):

１６９９ － １７０４.

ＬＩ ＪｕｎꎬＳＯＮＧ ＹｏｕｈｕｉꎬＬＩＵ Ｈａｎｂｉｎꎬｅｔ ａｌ. Ｃｒｅｅｐ ａｎｄ ｌｏｗ ｃｙｃｌｅ ｆａ￣

ｔｉｇｕｅ ｌｉｆｅ ｐｒｅｄｉｃｔｉｏｎ ｏｆ ｔｕｒｂｉｎｅ ｂｌａｄｅ￣ｔｅｎｏｎ￣ｄｉｓｋ ｓｔｒｕｃｔｕｒｅ [ Ｊ] .

Ｊｏｕｒｎａｌ ｏｆ Ｐｒｏｐｕｌｓｉｏｎ Ｔｅｃｈｎｏｌｏｇｙꎬ２０１５ꎬ３６(１１):１６９９ － １７０４.

[１２] 　 吕志强. 航空发动机轮盘低周疲劳寿命预测方法研究[Ｄ].

成都:电子科技大学ꎬ２０１６.

ＬＹＵ Ｚｈｉｑｉａｎｇ. Ｒｅｓｅａｒｃｈ ｏｎ ｌｏｗ ｃｙｃｌｅ ｆａｔｉｇｕｅ ｌｉｆｅ ｐｒｅｄｉｃｔｉｏｎ ｍｅｔｈ￣

ｏｄｏｌｏｇｙ ｏｆ ａｅｒｏ￣ｅｎｇｉｎｅ ｄｉｓｃ[Ｄ]. Ｃｈｅｎｇｄｕ:Ｕｎｉｖｅｒｓｉｔｙ ｏｆ Ｅｌｅｃｔｒｏｎ￣

ｉｃ Ｓｃｉｅｎｃｅ ａｎｄ Ｔｅｃｈｎｏｌｏｇｙ ｏｆ Ｃｈｉｎａꎬ２０１６.

[１３] 　 王卫国. 轮盘低循环疲劳寿命预测模型和试验评估方法研究

[Ｄ]. 南京:南京航空航天大学ꎬ２００６.

ＷＡＮＧ Ｗｅｉｇｕｏ. Ｒｅｓｅａｒｃｈ ｏｎ ｐｒｅｄｉｃｔｉｏｎ ｍｏｄｅｌ ｆｏｒ ｄｉｓｃ ＬＣＦ ｌｉｆｅ

ａｎｄ ｅｘｐｅｒｉｍｅｎｔ ａｓｓｅｓｓｍｅｎｔ ｍｅｔｈｏｄｏｌｏｇｙ[Ｄ]. Ｎａｎｊｉｎｇ:Ｎａｎｊｉｎｇ Ｕ￣

ｎｉｖｅｒｓｉｔｙ ｏｆ Ａｅｒｏｎａｕｔｉｃｓ ａｎｄ Ａｓｔｒｏｎａｕｔｉｃｓꎬ２００６.

[１４] 　 皮　 骏ꎬ马　 圣ꎬ高树伟ꎬ等. 基于等效应变的 Ｗａｌｋｅｒ 模型对

轮盘寿命的预测[Ｊ] . 机械设计ꎬ２０１９ꎬ３６(３):９１ － ９６.

ＰＩ ＪｕｎꎬＭＡ ＳｈｅｎｇꎬＧＡＯ Ｓｈｕｗｅｉꎬｅｔ ａｌ. Ｌｉｆｅ ｐｒｅｄｉｃｔｉｏｎ ｏｆ ｔｕｒｂｉｎｅ

ｄｉｓｋ ｂａｓｅｄ ｏｎ Ｗａｌｋｅｒ ｍｏｄｅｌ ｆｅａｔｕｒｉｎｇ ｅｑｕｉｖａｌｅｎｔ ｓｔｒａｉｎ[Ｊ] . Ｊｏｕｒ￣

ｎａｌ ｏｆ Ｍａｃｈｉｎｅ Ｄｅｓｉｇｎꎬ２０１９ꎬ３６(３):９１ － ９６.

[１５] 　 徐灏编. 疲劳强度[Ｍ]. 北京:高等教育出版社ꎬ１９８８.

ＸＵ Ｈａｏ. Ｆａｔｉｇｕｅ ｓｔｒｅｎｇｔｈ [ Ｍ ]. Ｂｅｉｊｉｎｇ: Ｈｉｇｈｅｒ Ｅｄｕｃａｔｉｏｎ

Ｐｒｅｓｓꎬ１９８８.

(王治红　 编辑)

􀅰７４􀅰


