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基于 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 的风光互补系统发电
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摘　 要:为充分利用某油田地区的太阳能和风力资源ꎬ验证该地区施行风光互补发电系统的可行性ꎬ提出了一种融

合粒子群算法(Ｐａｒｔｉｃｌｅ Ｓｗａｒｍ ＯｐｔｉｍｉｚａｔｉｏｎꎬＰＳＯ)、长短期记忆神经网络(Ｌｏｎｇ Ｓｈｏｒｔ￣Ｔｅｒｍ ＭｅｍｏｒｙꎬＬＳＴＭ)与注意力

机制(Ａｔｔｅｎｔｉｏｎ Ｍｅｃｈａｎｉｓｍ)的风光互补系统发电功率预测方法ꎮ 该方法首先利用粒子群算法对模型的隐藏神经元

个数和初始学习率进行优化ꎬ获取最优参数并结合 ＬＳＴＭ 捕捉历史序列的相关性ꎮ 在此基础上ꎬ引入注意力机制ꎬ
通过权重分配聚焦关键时间步ꎬ自动识别重要特征维度ꎬ从而提高预测可靠性ꎮ 结果表明:本文所提 ＰＳＯ￣ＬＳＴＭ￣
Ａｔｔｅｎｔｉｏｎ 模型可以有效捕捉数据的变化趋势ꎬ在风光互补系统发电功率预测中该模型均方根误差 ＲＭＳＥ 值稳定在

０. ２３５ꎬ平均绝对误差 ＭＡＥ 值为 ０. １４５ꎬ拟合优度 Ｒ２可达 ０. ９４３ꎬ相比于 ＬＳＴＭ 和 ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型均有提升ꎮ
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引　 言

随着全球对可再生能源重视程度的提高ꎬ风能

和太阳能因具有清洁、可再生的特性ꎬ成为新时代能

源发展的重要方向ꎮ 然而ꎬ由于风能与太阳能具有

间歇性、波动性及难预测性等特点ꎬ给新型综合能源

系统的健康稳定运行造成了很大困扰[１ － ５]ꎮ 因此ꎬ

对系统中风力和光伏的发电量准确预测ꎬ有助于综

合能源系统获取更大的收益以及更稳定的运行ꎮ
国内外众多学者针对发电量预测开展研究ꎮ 王

登海等人[６] 和王晨阳等人[７] 通过结合卷积神经网

络和长短期记忆混合 ( Ｃｏｎｖｏｌｕｔｉｏｎａｌ Ｎｅｕｒａｌ Ｎｅｔ￣
ｗｏｒｋｓ￣Ｌｏｎｇ Ｓｈｏｒｔ￣Ｔｅｒｍ ＭｅｍｏｒｙꎬＣＮＮ￣ＬＳＴＭ)模型进

行光伏发电量预测ꎬ前者利用模型捕捉时空特征ꎬ以
应对天气突变对发电量预测精度造成的影响ꎬ后者

使用基于遗传算法的预测模型进行优化ꎬ两者均在

一定程度上提高了所提模型的预测精度ꎮ 方鹏等

人[８]创新性地融合模糊聚类算法(ＦＣＭＡ)与 ＬＳＴＭ

神经网络ꎬ构建了面向中长期辐射照度的混合预测

框架ꎬ该研究通过 ＦＣＭＡ 算法提取辐照度时序特

征ꎬ结合随机森林进行特征优化ꎬ并利用 ＬＳＴＭ 捕捉

长周期时序关联特性ꎬ最终建立分布式光伏电站出

力预测模型ꎮ 实验表明ꎬ其预测精度较单模型有较

大提升ꎬ有效攻克了传统预测中长周期时序依赖的

技术瓶颈ꎮ 代倩等人[９] 结合自组织特征映射(Ｓｅｌｆ￣

Ｏｒｇａｎｉｚｉｎｇ Ｆｅａｔｕｒｅ ＭａｐꎬＳＯＭ)天气聚类与 ＢＰ 神经

网络ꎬ解决太阳辐照度数据不足问题ꎬ使预测误差降

低 ４０％ ꎮ 潘东等人[１０] 通过量子 ＬＳＴＭ 联合双重注

意力机制降低参数冗余ꎬ提高了光伏发电预测精度ꎮ

王俊杰等人[１１] 通过多特征融合ꎬ并结合 ＸＧＢｏｏｓｔ￣

ＬｉｇｈｔＧＢＭ￣ＣｏｎｖＬＳＴＭ (ＸＧＢ￣ＬＧ￣ＣＬ)模型ꎬ减少梯度

问题ꎬ预测率达到了 ８８. ４％ ꎮ
相对于光伏发电ꎬ近年来针对风力发电功率预

测算法方面的研究呈现多样化ꎮ 唱友义等人[１２] 针

对风电的季节性波动和短时平稳变化特征ꎬ开发了

月度发电数据集的扩展方法ꎬ结合中期气象预报信

息精度前高后低的特点ꎬ构建了融合 ｋｄｔｒｅｅ 单元匹

配机制、数据增强策略和时间序列分析的三维预测

模型ꎬ并通过熵权法实现多算法的组合优化ꎮ 冯

乐[１３]从风光互补的时空关联特征切入ꎬ系统探讨了

风光功率时空交互关系、联合预测模型架构、参数优

化策略及预调度协同机制ꎬ创新性地设计了基于异

构图神经网络的联合预测框架ꎬ为风光协同发电系

统的智能调度提供理论依据ꎮ 李俊[１４] 构建了风机

功率特性曲线模型ꎬ并进行了多环境参数下的实测对

比ꎬ发现了风速湍流强度、大气密度和温度梯度等环

境参数对风力发电效率的影响规律ꎮ 张宇[１５]创新性

地将数值气象预报(Ｎｕｍｅｒｉｃａｌ Ｗｅａｔｈｅｒ Ｐｒｅｄｉｃｔｉｏｎꎬ

ＮＷＰ)的多分辨率数据整合技术引入风电预测ꎬ采

用插值分析与聚类算法相结合的方式建立多维时序

特征提取模型ꎬ并引入注意力机制改进的 Ｓｅｑ２Ｓｅｑ

深度学习架构进行模型验证ꎬ实证结果显示ꎬ该多元

聚类算法较大提升了预测精度ꎮ

目前ꎬ对单一能源的发电量预测方法已经相对

成熟ꎬ但对风光互补发电系统发电功率预测方法的

研究相对较少ꎮ 基于上述分析ꎬ本文主要贡献如下:

提出利用粒子群优化算法对 ＬＳＴＭ 的超参数进行优

化ꎻ通过引入注意力机制ꎬ实现权重分配聚焦关键时

间步ꎬ弥补了单一 ＬＳＴＭ 模型平等对待所有历史时

间导致预测精度低的缺点ꎻ通过引入 ４ 项评价指标

直观展示了 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型的预测性能ꎻ

风光互补发电系统通过整合区域风能与太阳能资

源ꎬ可降低单一能源对电力系统的影响ꎬ使风力、光

伏的预测误差被抵消ꎮ 尤其在多元气象条件协同作

用下ꎬ该机制可优化 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 预测模型

的泛化能力ꎬ从而提高预测精度ꎮ
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１　 预测模型设计

预测模型以 ＬＳＴＭ 算法为核心ꎬ利用 ＰＳＯ 对其

初始学习率等超参数进行寻优ꎬ并引入 Ａｔｔｅｎｔｉｏｎ 机

制以增强特征提取ꎬ从而共同提高模型的预测精度ꎮ
１. １　 长短期记忆神经网络

作为一种特殊的循环神经网络ꎬＬＳＴＭ 能在一

定程度上弥补 ＲＮＮ 的不足:解决 ＲＮＮ 误差在时间

步上的反向传播ꎬ对长时间序列更为敏感ꎬ支持多变

量输入输出ꎻ其独特的层控机制可筛选无关信息ꎬ极
大增强模型的稳定性[１６]ꎬＬＳＴＭ 结构如图 １ 所示ꎮ
图中ꎬＸ 表示输入向量ꎬＹ 表示输出向量ꎬｈ 表示隐

含层状态值ꎬＣ 表示细胞层状态值ꎬｔ － １ꎬｔ 和 ｔ ＋ １ 分

别表示 ｔ － １ꎬｔ 和 ｔ ＋ １ 时刻ꎮ

图 １　 ＬＳＴＭ 结构图

Ｆｉｇ. １ ＬＳＴＭ ｓｔｒｕｃｔｕｒｅ ｄｉａｇｒａｍ

ＬＳＴＭ 的核心在于其内部具有 ４ 个交互层ꎬ分
别为输入层、遗忘层、细胞层、输出层ꎮ ４ 个交互层

之间以一种特殊的方式进行交互并形成逻辑闭环:
遗忘层与输入层共同调控记忆更新ꎬ细胞状态执行

整合ꎬ输出门控制信息释放ꎬ使得 ＬＳＴＭ 可以存储和

访问长序列中的信息[１７ － １８]ꎮ
然而ꎬＬＳＴＭ 独特的层控机制也导致其训练和

预测速度慢于循环神经网络ꎮ 此外ꎬＬＳＴＭ 对初始

学习率、隐藏层大小、初始化等超参数高度敏感ꎬ超
参数的选取极大地影响模型对时间序列的预测精

度ꎬ因此采用合适的超参数优化算法ꎬ可使 ＬＳＴＭ 的

准确性和计算速度得到改善ꎮ
１. ２　 ＰＳＯ 算法

粒子群优化算法是一种基于鸟群觅食行为的启

发式搜索算法ꎬ其通过群体协作在解空间寻找全局

最优解[１９ － ２２]ꎮ

迭代前ꎬ粒子的生成具有随机性并配置参数ꎮ
其中每个粒子记录自身历史最优位置(即个体极

值)ꎬ用于指导后续搜索方向ꎮ 迭代阶段ꎬ每个粒子

为了完成自身速度和位置的更新ꎬ而去追踪个体极

值点和全局极值点ꎮ 用 ｎ 维向量表示粒子 ｉ 的信

息ꎬ位置为 Ｌ ｉ ＝ ( ｌｉꎬ１ꎬｌｉꎬ２ꎬ􀆺ꎬｌｉꎬｎ)ꎬ速度为Ｖｉ ＝ ( ｖｉꎬ１ꎬ

ｖｉꎬ２ꎬ􀆺ꎬｖｉꎬｎ)ꎬ方程表示为:

ｖｋ＋１ｉꎬｎ ＝ ω􀅰 ｖｋｉꎬｎ ＋ ｃ１ 􀅰ｒａｎｄｋ
１(ｐｋ

ｉꎬｎ － ｌｋｉꎬｎ) ＋ ｃ２ 􀅰

ｒａｎｄｋ
１(ｇｋ

ｉꎬｎ ｌｋｉꎬｎ) (１)

ｌｋ＋１ｉꎬｎ ＝ ｌｋｉꎬｎ ＋ ｖｋ＋１ｉꎬｎ (２)

式中:ｖｋｉꎬｎ—在第 ｎ 维度中迭代时ꎬ第 ｉ 个粒子在第 ｋ

次的速度ꎻω—惯性权重ꎻｃ１ꎬｃ２—学习因子ꎬ旨在改

变粒子变化的步长ꎻｒａｎｄ—[１ꎬ２]范围内的随机数ꎬ
实现粒子搜索和寻优行为的动态平衡ꎻｐｋ

ｉꎬｎ和 ｇｋ
ｉꎬｎ—

在第 ｎ 维度中ꎬ第 ｉ 个粒子在第 ｋ 次迭代中的粒子

最佳位置和群体最佳位置ꎻｌｋｉꎬｎ—第 ｎ 维度中ꎬ第 ｉ 个
粒子在第 ｋ 次迭代中的位置ꎮ

粒子根据个体极值和全局极值来改变自身的搜

索速度和方向[２３ － ２６]ꎮ 通过对给定超参数空间的搜

索ꎬ不仅减少人工试错ꎬ显著降低超参数的调整时

间ꎬ还可以避免出现局部最优ꎬ找到最优的超参数组

合ꎮ 整个过程中ꎬ粒子的优劣需引入特定函数来进

行抉择ꎬ例如适应度函数ꎬ从而更好地改变粒子的速

度和位置等参数ꎮ
ＬＳＴＭ 在短时间序列、少变量等简单场景中可

能具有良好的先进性ꎬ但在长序列、多变量等复杂现

实环境中可能表现不佳ꎮ
１. ３　 注意力机制

注意力(Ａｔｔｅｎｔｉｏｎ)机制灵感来源于人类视觉的

信息处理机制ꎬ视觉系统在整体环境中找到焦点区

域给予更多关注[２７ － ３０]ꎬ同时抑制无用信息的获取ꎮ
Ａｔｔｅｎｔｉｏｎ 机制能弥补 ＬＳＴＭ 在长时间序列中的不

足ꎬ通过动态分配权重ꎬ捕捉影响模型预测精度的关

键信息ꎬ避免 ＬＳＴＭ 因时间序列过长而引起预测性

能下降ꎮ
注意力机制与 ＬＳＴＭ 结合的工作流程分为两步:

特征匹配阶段ꎬ通过计算 Ａｔｔｅｎｔｉｏｎ 机制相似度函数使

输出权重标准化ꎬ从而得到变量及权重ꎻ特征增强阶

段ꎬ依据注意力权重对变量进行加权相加ꎬ得到新的
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输出向量ꎬ以此突出关键特征ꎬ抑制噪声干扰ꎮ 注意

力机制与 ＬＳＴＭ 结合原理如图 ２ 所示ꎮ 图中 ａｔ ( ｔ ＝
１ꎬ２ꎬ３ꎬ􀆺)表示输入与输出状态之间的权重比ꎬ反
映其对当前输出的影响ꎻｈｔ 为某个特定时间步前一

时刻的隐藏状态ꎻｃ 为加权后输出的新向量ꎮ

图 ２　 ＬＳＴＭ 与 Ａｔｔｅｎｔｉｏｎ 机制结合原理图

Ｆｉｇ. ２ Ｓｃｈｅｍａｔｉｃ ｄｉａｇｒａｍ ｏｆ ＬＳＴＭ ｃｏｍｂｉｎｅｄ ｗｉｔｈ

ａｔｔｅｎｔｉｏｎ ｍｅｃｈａｎｉｓｍ

序列片段的权重占比取决于相似度的计算ꎬ二
者呈正相关ꎮ 注意力机制会自动忽略差异性较大的

序列ꎬ从而降低对模型的不良影响ꎬ实现降低计算成

本ꎬ提高学习效率和准确性[３０]ꎮ 注意力机制公

式为:

ａｔ ＝
ｅｘｐ[ ｓ(ｈｔꎬｈ

－
ｓ)]

∑
ｎ

ｔ ＝ １
ｅｘｐ[ ｓ(ｈｔꎬｈ

－
ｓ)]

(３)

ｓ(ｈｔꎬｈｓ) ＝ ｈＴ
ｔ ｈｓ (４)

ｃ ＝ ∑
ｎ

ｉ ＝ １
ａｉｈｉ (５)

式中:ｓ(􀅰)—两输入变量之间的相似度计算ꎻｈｓ—源

端隐藏状态ꎻ ｈ
－

ｓ—某个特定时间步的隐藏状态ꎻ

ｈＴ
ｔ —ｈｔ 的转置矩阵ꎻｈｉ—隐向量ꎬ包含整个输入序列

的信息ꎬ但重点关注第 ｊ 变量周围的部分ꎻａｉ—对应

隐向量的权重ꎮ
１. ４　 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 神经网络发电功率预测

模型

　 　 ＬＳＴＭ 可以很好地解决神经网络中长期依赖问

题ꎬ但在训练过程中仍要面临如何选择网络结构和

最优参数的问题ꎬ而依赖经验或使用网格搜索法对

训练效果影响较大ꎮ ＰＳＯ 优化算法能模拟群体智能

搜索ꎬ通过粒子位置更新策略ꎬ在指定的参数空间寻

求全局最优解ꎬ以寻找最优参数并提高算法的收敛

速度ꎮ 在多变量时间序列中ꎬ不同特征对预测结果

的影响程度不同ꎬ引入注意力机制可实现权重再分

配ꎬ进而增强序列非平稳性特征的提取能力ꎬ使模型

能够更精确地捕捉影响发电量预测的敏感信息ꎬ从
而提高预测性能ꎮ

本文 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型通过分阶段耦合

设计提高模型精度:首先采用 ＰＳＯ 算法优化 ＬＳＴＭ
的超参数ꎬ以均方误差损失函数(ＭＳＥ)为适应度函

数ꎬ提升模型泛化能力ꎻ随后ꎬ采用 Ａｔｔｅｎｔｉｏｎ 机制增

强特征提取ꎬ通过给予关键变量更大权重ꎬ使模型能

更准确地捕捉影响发电量预测精度的数据特征ꎮ
ＰＳＤ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型结构如图 ３ 所示ꎮ

图 ３　 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型结构图

Ｆｉｇ. ３ Ｓｔｒｕｃｔｕｒａｌ ｄｉａｇｒａｍ ｏｆ ＰＳＯ￣ＬＳＴＭ￣ａｔｔｅｎｔｉｏｎ ｍｏｄｅｌ

ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 预测模型在提升精度方面

具有优化和部署优势ꎮ 参数的自动优化极大缩短了

寻优时间ꎬ减少了冗余计算ꎮ 此外ꎬ模型采用的阶段

性融合架构首次将 ＰＳＯ 算法的全局优化、ＬＳＴＭ 的

时序建模以及注意力机制的特征选取进行集成ꎬ在
一定程度上解决了复杂时序中“优化 － 建模 － 聚

焦”的耦合问题ꎬ具有一定的先进性ꎮ
ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型的具体预测流程如图

４ 所示ꎮ 具体步骤为:
(１) 采用 ＰＳＯ 算法对需要优化的参数进行

编码ꎻ
(２)定义用于评估粒子性能的适应度函数ꎻ
(３)初始化种群个体位置和速度ꎻ
(４)ＰＳＯ 算法搜索全局最优解和个体最优解ꎻ
(５)检查是否达到最大迭代次数ꎮ 如果否ꎬ则

继续搜索ꎮ 如果是ꎬ则进入下一步ꎻ
(６) 输出通过 ＰＳＯ 算法找到的最优参数ꎻ
(７)创建含注意力机制的长短期记忆神经网络

ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型ꎻ
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(８)获取最优隐藏神经元个数和初始学习率ꎻ
(９)建立 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 预测模型并使用

数据集训练ꎻ
(１０) 输出模型的迭代和发电量预测曲线ꎻ
(１１)评估模型预测结果的性能ꎮ

图 ４　 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型发电功率预测流程

Ｆｉｇ. ４ ＰＳＯ￣ＬＳＴＭ￣ａｔｔｅｎｔｉｏｎ ｍｏｄｅｌ ｇｅｎｅｒａｔｉｏｎ ｐｏｗｅｒ

ｐｒｅｄｉｃｔｉｏｎ ｐｒｏｃｅｓｓ

２　 实验分析

实验采用 ＭＳＥ 损失函数度量了样本点在特征

空间中到回归曲面的垂直距离ꎬ通过最小化这些距

离的平方和ꎬ模型可寻找到一个最优超平面ꎬ使得所

有样本点与该平面的偏差最小ꎬ从而确保模型对数

据分布的良好拟合ꎮ ＭＳＥ 的值越小ꎬ表示预测模型

描述的样本数据的精确度越高ꎮ

为了验证模型的预测性能ꎬ选取平均绝对误差

(ＭＡＥ)、均方误差(ＭＳＥ)、均方根误差(ＲＭＳＥ)和决

定系数(Ｒ２)作为评价指标ꎬ计算公式如下ꎮ

ＭＡＥ ＝ １
ｍ∑

ｍ

ｉ ＝ １
( ｜ ｙｉ － ｆ(ｘｉ) ｜ ) (６)

ＭＳＥ ＝ １
ｍ∑

ｍ

ｉ ＝ １
(ｙｉ － ｆ(ｘｉ)) ２ (７)

ＲＭＳＥ ＝ １
ｍ∑

ｍ

ｉ ＝ １
(ｙｉ － ｆ(ｘｉ)) ２ (８)

Ｒ２ ＝ １ －
ＭＳＥ(ｙｉꎬｆ(ｘｉ))
１
ｍ∑

ｍ

ｉ ＝ １
(ｙｉ － ｙｔ) ２

(９)

式中:ｙｉ—当时的标准化实际观察值ꎻｘｉ—输入变量ꎻ

ｙｔ—平均值ꎻｍ—样本容量ꎮ
本文采用 Ｐｙｔｈｏｎ 程序搭建 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ

模型ꎬ并以河北省唐山市某油田地区真实历史数据

为实验数据ꎮ 在实验参数的选取上ꎬ参数过多可能

会导致实验结果误差变大ꎬ而参数过少则会导致提

供的信息不足ꎬ难以提取数据特征ꎮ 为此ꎬ本文选取

了风速、瞬时风向、温度、太阳辐射强度和发电功率

五维输入参数对典型日 ２４ ｈ 的发电量进行了预测ꎮ

２. １　 实验参数设置

为验证 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型对风光互补发

电系统发电功率的预测性能ꎬ对 ２４ ｈ 内的 １００ 份发

电量数据进行训练和分析ꎮ 在保持数据集相同、参
数设置一致的前提下ꎬ将 ＬＳＴＭ、ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 和

ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ ３ 种模型的预测效果进行对比

分析ꎮ 搭建的 ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型经 ＰＳＯ 算法优化

后获取最佳超参数ꎬ最终获得的最优学习率为

０􀆰 ０１２ꎬ最优的隐藏层神经元个数为 ２０ꎮ 表 １ 为

ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型参数ꎮ

表 １　 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型参数

Ｔａｂ. １ ＰＳＯ￣ＬＳＴＭ￣ａｔｔｅｎｔｉｏｎ ｍｏｄｅｌ ｐａｒａｍｅｔｅｒｓ

参　 数 数　 值

粒子群规模 １０

ＰＳＯ 迭代次数 １００

惯性权重 ０. ９

个体学习因子 １. ５

ＬＳＴＭ 最大训练回合数 １００

输入维度 ５

输出维度 １

学习率范围 (０. ０００１ꎬ０. １)

隐藏层范围 (１０ꎬ１００)

２. ２　 发电量预测分析

通过对数据集进行训练ꎬ得到 ３ 种不同模型对
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风光互补发电系统发电功率的预测情况ꎬ结果如图

５ 所示ꎮ

图 ５　 ３ 种模型风光互补发电系统发电功率的预测结果

Ｆｉｇ. ５ Ｐｒｅｄｉｃｔｉｏｎ ｒｅｓｕｌｔｓ ｏｆ ｐｏｗｅｒ ｇｅｎｅｒａｔｉｏｎ ｃａｐａｃｉｔｙ

ｏｆ ｗｉｎｄ￣ｓｏｌａｒ ｈｙｂｒｉｄ ｐｏｗｅｒ ｇｅｎｅｒａｔｉｏｎ

ｓｙｓｔｅｍｓ ａｍｏｎｇ ｔｈｒｅｅ ｍｏｄｅｌｓ

由图 ５(ａ)可知ꎬ单一的 ＬＳＴＭ 模型预测表现相

对较差ꎬ在关键时间步上存在较大预测误差ꎮ 为减

少此类型误差ꎬ引入注意力机制通过权重分配聚焦

关键时间步ꎮ 由图 ５ ( ｂ)可知ꎬ引入注意力机制的

ＬＳＴＭ 模型在拟合程度上有了较大提升ꎬ表明模型能

够更准更快地抓取数据的特征信息ꎮ 由图 ５(ｃ)可

知ꎬ通过粒子群算法对部分超参数进行寻优ꎬ再融合

注意力机制识别重要特征维度ꎬ拟合效果相较单一

ＬＳＴＭ 模型和 ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型有了极大改善ꎮ
３ 种模型的损失函数迭代情况如图 ６ 所示ꎮ 从

图 ６ 可以看出ꎬ３ 种模型的损失函数均能在 ５０ 次迭

代次数内下降并达到稳定ꎬ说明模型是理性且稳定

的ꎮ 另外ꎬ从走势情况上可以看出ꎬＰＳＯ￣ＬＳＴＭ￣Ａｔ￣
ｔｅｎｔｉｏｎ 模型损失函数的下降速度更快ꎬ一定程度上

说明经过寻优以及添加注意力机制后ꎬ模型可以更

快更准地抓取数据特征的有效信息ꎮ

图 ６　 ３ 种模型损失函数迭代对比

Ｆｉｇ. ６ Ｉｔｅｒａｔｉｖｅ ｃｏｍｐａｒｉｓｏｎ ｏｆ ｌｏｓｓ ｆｕｎｃｔｉｏｎｓ

ａｍｏｎｇ ｔｈｒｅｅ ｍｏｄｅｌｓ
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２. ３　 模型评价对比

对 ３ 种模型进行训练ꎬ 并通过 ＭＡＥ、 ＭＳＥ、
ＲＭＳＥ 和 Ｒ２评估指标来衡量模型的预测性能ꎬ结果

如表 ２ 所示ꎮ 这 ４ 项指标共同反映了模型在发电量

预测方面的准确性和可靠性ꎮ 由表 ２ 可知ꎬＰＳＯ￣
ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型的 ＭＡＥ 值和 ＭＳＥ 值最小ꎬ表明

本文模型在发电功率预测精度和拟合程度方面有较

好的表现ꎮ 另外ꎬＲＭＳＥ 可以反映平均误差ꎬ本文提

出 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型的 ＲＭＳＥ 值为 ０. ２３５ꎬ相
比于 ＬＳＴＭ 和 ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型均有所降低ꎬ说
明本文模型误差较小ꎮ 拟合优度 Ｒ２同样可以直观

展示预测结果拟合实际值的程度ꎬＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎ￣
ｔｉｏｎ 模型中 Ｒ２约为 ０. ９４３ꎬ为 ３ 种模型中的最大值ꎮ
但 ３ 种模型的 Ｒ２值均达到 ０. ７５ 以上ꎬ表明这些模

型都可以在一定程度上对发电功率进行预测ꎬ而
ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型表现更好ꎬ预测能力和准

确性更高ꎮ

表 ２　 模型评价指标对照表

Ｔａｂ. ２ Ｃｏｍｐａｒｉｓｏｎ ｔａｂｌｅ ｏｆ ｍｏｄｅｌ ｅｖａｌｕａｔｉｏｎ ｉｎｄｉｃａｔｏｒｓ

模　 型 ＭＡＥ ＭＳＥ ＲＭＳＥ Ｒ２

ＬＳＴＭ ０. ４３５ ０. ４２３ ０. ６５０ ０. ７５６

ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ ０. ２８６ ０. １８９ ０. ４３５ ０. ８６７

ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ ０. １４５ ０. ０５５ ０. ２３５ ０. ９４３

为进一步验证本文模型的先进性ꎬ选取 ５ 种模

型与 ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型的评估指标进行对

比ꎬ结果如表 ３ 所示ꎮ 由表 ３ 可知ꎬ本文所提 ＰＳＯ￣
ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型的精度整体优于其他模型ꎬ直
观地表明本文所提模型的先进性ꎮ

表 ３　 不同改进模型评价指标对照表

Ｔａｂ. ３ Ｃｏｍｐａｒｉｓｏｎ ｔａｂｌｅ ｏｆ ｅｖａｌｕａｔｉｏｎ ｉｎｄｉｃａｔｏｒｓ ｆｏｒ

ｄｉｆｆｅｒｅｎｔ ｉｍｐｒｏｖｅｍｅｎｔ ｍｏｄｅｌｓ

模　 型 ＭＡＥ ＭＳＥ ＲＭＳＥ Ｒ２

ＣＮＮ￣ＬＳＴＭ[６] － ０. ５２３ ０. ７２３ ０. ９２１

ＧＡ￣ＣＮＮ￣ＬＳＴＭ[７] ０. ２１２ ０. ５８５ ０. ６１２ －

ＤＡ￣ＱＬＳＴＭ[１０] － ０. １２０ ０. ３４７ ０. ９１８

ＸＧＢｏｏｓｔ￣ＬｉｇｈｔＧＢＭ￣ＣｏｎｖＬＳＴＭ[１１] － － ０. １３１ ０. ８８４

改进 ＰＳＯ￣ＬＳＴＭ[３１] ０. ２６０ － ０. １７２ ０. ９７９

ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ ０. １４５ ０. ０５５ ０. ２３５ ０. ９４３

注:表中“ － ”表示无数据ꎮ

３　 结　 论

本文对比研究了 ＬＳＴＭ、ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 和 ＰＳＯ￣
ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ ３ 种模型在发电功率预测方面的性

能ꎬ所得结论如下:
(１) ＰＳＯ￣ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ 模型利用粒子群算法

对部分超参数进行寻优ꎬ加速了算法的收敛过程ꎬ实
现了超参数的最佳配置ꎮ

(２) 通过融合注意力机制实现了权重分配聚焦

关键时间步ꎬ弥补了单一 ＬＳＴＭ 模型对所有历史时

间平等对待而导致预测精度低的缺点ꎮ
(３) 粒子群算法和注意力机制的双重作用ꎬ一

方面优化了模型超参数ꎬ另一方面精确捕捉了影响

结果的关键特征ꎬ从而提高了预测准确性ꎮ
(４) 实验所得预测结果表明ꎬ基于 ＰＳＯ￣ＬＳＴＭ￣

Ａｔｔｅｎｔｉｏｎ 预测模型的 ＭＳＥ 值为 ０. ０５５ꎬＭＡＥ 值为

０􀆰 １４５ꎬ ＲＭＳＥ 值为 ０. ２３５ꎬ 决定系数 Ｒ２ 提高到

０􀆰 ９４３ꎬ各项评价指标均优于 ＬＳＴＭ、ＬＳＴＭ￣Ａｔｔｅｎｔｉｏｎ
模型ꎬ预测效果更好ꎮ
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