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Abstract; To fully utilize the solar and wind energy resources in a certain oilfield area and verify the fea-
sibility of implementing a wind-solar complementary power generation system in this area, a power gener-
ation prediction method for the wind-solar complementary system was proposed, which combined particle
swarm optimization (PSO) and Long Short-Term Memory (LSTM) neural network with attention mecha-
nism (AM). The PSO algorithm was introduced to optimize the number of hidden neurons and the initial
learning rate of the model, obtaining the optimal parameters and combining LSTM to capture the correla-
tion of historical sequences. Based on this, the AM was introduced to focus on key time steps through
weight distribution and automatically identify important feature dimensions, thereby improving the predic-
tion reliability. The results show that the proposed PSO-LSTM-attention model effectively captures the

changing trends of data. In the wind-solar complementary power generation prediction, the root mean
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square error (RMSE ) value of model is stable at 0. 235, the mean absolute error ( MAE) value is

0. 145, and the goodness of fit R* can reach 0. 943, which are all improvements compared to that of

LSTM and LSTM-attention models.

Key words: complementary wind and solar power generation, particle swarm optimization ( PSO) , long

short-term memory (LSTM) , attention mechanism, hyperparameter
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