文章编号:1001-2060(2022)09-0120-08

墙式布置锅炉不同燃尽风率下燃用低挥发分煤的 燃烧及 NO_x 生成特性

李 松1,并新经2,贺 萌3,陈智超4

(1. 北京动力机械研究所,北京 100074; 2. 西安热工研究院有限公司,陕西 西安 710054; 3. 火箭军装备部驻 北京地区第六代表室,北京 100074; 4. 哈尔滨工业大学 能源科学与工程学院,黑龙江 哈尔滨 150001)

摘 要:某电厂4号墙式布置机组燃用无烟煤和贫煤混煤,炉膛出口 NO_x 排放质量浓度高达 1 272 mg/m³(6% O₂),采取中心给粉旋流燃烧器(CFR)和两层燃尽风对其燃烧系统进行低 NO_x 技术改造。采用数值仿真和改造后 工业试验相结合的方法,研究了改造方案可行性。结果显示:不同燃尽风(OFA)风率条件下,低挥发分煤均能实现稳 定燃烧;随 OFA 风率增加,主燃区化学当量比减小,O₂质量分数降低,燃烧反应速度降低,高温区域范围呈缩小趋势, 温度沿炉高分布更为均衡,主燃区相对低温贫氧氛围有效抑制了低挥发分煤燃烧条件下的 NO_x 生成;27.50%的 OFA 风率条件时,炉内温度分布均衡,NO_x 排放质量浓度 845.1 mg/m³,最终选定的 OFA 风率为 27.50%。改造后工业试 验显示,NO_x 排放质量浓度降为 833.4 mg/m³,降幅达 34.5%。数值仿真结果和改造后工业试验数据相吻合,证明机 组低 NO_x 技术改造方案可行。

关 键 词:锅炉;中心给粉;低挥发分;数值模拟;NO_x 排放

中图分类号:TK16 文献标识码:A DOI:10.16146/j. cnki. rndlgc. 2022. 09. 015

[**引用本文格式**]李 松,井新经,贺 萌,等. 墙式布置锅炉不同燃尽风率下燃用低挥发分煤的燃烧及 NO_x 生成特性[J]. 热能动 力工程,2022,37(9):120-127. LI Song, JING Xin-jing, HE Meng, et al. Combustion and NO_x formation characteristics of wall-fired boiler fed with low volatile coal at different OFA rates[J]. Journal of Engineering for Thermal Energy and Power,2022,37(9):120-127.

Combustion and NO_x Formation Characteristics of Wall-fired Boiler fed with Low Volatile Coal at Different OFA Rates

LI Song¹, JING Xin-jing², HE Meng³, CHEN Zhi-chao⁴

(1. Beijing Power Machinery Institute, Beijing, China, Post Code:100074; 2. Xi'an Thermal Power Research Institute Co., Ltd., Xi'an, China, Post Code:710054; 3. The Sixth Representative Office in Beijing of Rocket Force, Beijing, China, Post Code:100074;
 4. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China, Post Code:150001)

Abstract: Low-volatile coal of anthracite and lean coal was the design coal of No. 4 wall-fired boiler in the power plant, NO_x emission of furnace outlet was 1 272 mg/m³(6% O_2). Centrally fuel rich (CFR) swirl burner and two-layer over-fire air (OFA) system were adopted for the combustion system during the low NO_x technical transformation. The numerical simulation method combining with industrial test data was adopted to study the feasibility of reconstruction scheme. The results show that steady combustion of the low-volatile coal can be achieved at different OFA rates. The chemical equivalence ratio, O_2 mass fraction and combustion reaction speed of primary combustion zone decrease with the increase of OFA rate. In this way, the area of high-temperature zone declines, temperature profile is more uniform along furnace height direction. Under the relatively oxygen-depleted and low-temperature atmosphere, NO_x emission from the low-volatile coal is restrained in the primary combustion zone effectively. The temperature field of furnace is evenly distributed, and NO_x emission is 845.1 mg/m³ at 27.50% OFA rate, so the fi-

收稿日期:2021-09-18; 修订日期:2021-11-26

作者简介:李 松(1985-),男,河北衡水人,北京动力机械研究所博士.

nally selected OFA rate is 27.50%. After reconstruction, the industrial test shows that NO_{χ} emission is 833.4 mg/m³, reduced by 34.5%. Numerical simulation result is consistent with industrial test data, which proves that the low NO_{χ} technical reconstruction scheme of the unit is feasible. **Key words:** boiler, centrally fuel rich, low volatile, numerical simulation, NO_{χ} emission

引 言

现阶段,煤炭仍占据我国能源消耗的主导地位, 其中低挥发分煤占有一定比例,其典型特征为煤化 程度较高、挥发分值较低,尤其是着火及燃尽温度均 偏高,使 NO_x 生成量居高不下。燃煤机组多采用拱 型炉膛燃烧技术(W 型燃烧技术)燃用低挥发分煤。 我国在引进墙式布置旋流燃烧技术后,少数机组也 燃用无烟煤和贫煤,NO_x 排放浓度较高,需要对燃 烧系统进行改造,以降低 NO_x 排放浓度,提高机组 运行环保性。

赵伶玲等人^[1] 仿真研究了花瓣旋流燃烧器的 流动特性:顾明言等人^[2]研究了旋流度对气固两相 流场和污染物生成的影响;李争起等人[3]研究了 风/煤粉浓度分布对旋流燃烧器结渣趋势的影响:方 庆艳^[4]采用双混合分数方法对燃用混煤的四角切 圆锅炉进行了热态模拟;李争起等人[5]研究了不同 燃烧器类型在机组运行时的燃烧及污染物生成的区 别:薛山等人^[6]对不同挥发分煤种进行了实验室热 态试验研究;范卫东等人^[7]研究了 NO_x 在空气分级 条件下的生成特性;刘光奎等人^[8]对燃用无烟煤的 W型火焰锅炉进行了热态测量:陈伟锋等人^[9]研究 了不同负荷和风量配比下某工业锅炉的温度分布情 况;孙俊威等人^[10]通过模拟发现生物质气体再燃能 抑制 NO_x 生成且不影响机组运行;李想^[11] 及靖剑 平^[12]分别研究了不同旋流技术在机组上的运行特 性。旋流燃烧技术的试验研究和仿真研究多数以高 挥发分煤为研究对象[13-15]。以低挥发分煤为研究 对象的相对较少,本文对燃用低挥发分煤的中心给 粉(Centrally-Fuel-Rich, CFR)旋流燃烧技术进行了 模拟,为同类型的机组改造提供设计依据。

1 研究对象概况

某电厂4号机组为某型亚临界 300 MW 锅炉,标准配置 3 层 24 台燃烧器,距冷灰斗底部标高分别为 17 855,21 360 和 24 865 mm,最上层燃烧器正上

方3 500 mm 位置布置1 层燃尽风(OFA),标高28 365 mm,设计燃用65% 阳泉无烟煤与35% 晋中贫煤的混煤。

自投运以来 4 号机组出现诸多问题,尤其是 NO_x 生成量偏高,达到 1 200 mg/m³(6% O₂)以上。 为解决上述问题,通过对机组运行及设计数据综合 分析,对机组的燃烧系统进行改造:(1)将其原燃烧 器更换为适用于燃用低挥发分煤种的中心给粉旋流 燃烧器,采用前后墙对冲布置;(2)在原 OFA 系统 正上部 3 585 mm 位置增加 1 层新燃尽风系统,同时 将两层燃尽风率增大。上述措施的目的是保证机组 燃烧效率的前提下降低主燃区 NO_x 生成量。以改 造前设计方案为原型进行了数值模拟,以验证方案 可行性并指导改造后燃烧调试。

2 几何模型和网格划分

2.1 几何模型

墙式布置锅炉的几何特性是沿燃烧器水平布置 方向具有对称特性,因此沿着其中心截面划分,取一 侧的半个炉膛作为本次数值模拟的计算域建立全尺 寸模型^[14]。计算域的长度、宽度及高度为20 975, 6 675和 50 500 mm。图 1 为几何模型示意图。

2.2 网格划分及无关性验证

采用 ICEM 软件进行网格划分,对 CFR 燃烧

器、燃尽风系统和炉内区域分别划分网格,其中燃烧 器和燃尽风系统采用 Hexa-Dominant 型非结构网格 拓扑,即壁面区域为四面体网格,而内部为六面体网 格,二者之间采用金字塔网格过渡,这种类型的网格 划分可以在保证收敛精度的前提下,有效缩短计算 耗时,加快收敛速度。

图 2 为计算域网格划分。炉膛内区域采用多块 结构网格拓扑,对燃烧器出口区域采用 O 型网格结构,以适应该区域有旋流动的特性,O 型拓扑对应 1 923 mm 的圆直径,是燃烧器出口最大直径的1.6 倍。燃尽风出口区域采用同类型网格结构。该结构 可以有效捕捉旋流现象。冷灰斗呈倒梯形布置,上 下边长相差较大,该区域采用 Y 型网格结构以提高 网格质量。

图 3 为燃烧器结构图。煤粉经浓缩环形成浓淡 分布,内二次风为轴流进气,外二次风为径向进气。

3 数学模型和边界条件

煤粉燃烧过程涉及气固两相湍流流动,为提高 燃烧效率,需要煤粉颗粒与空气充分掺混,选取 Realizable $\kappa - \varepsilon$ 湍流模型、P-I 辐射模型、Non-Premixed 燃烧模型、挥发分析出模型为双步竞争反应模型,固 定碳反应模型为 Kinetics/diffusion-limited。

炉膛壁面边界离散相模型(Discrete Phase model,DPM)条件设置为镜面反射类型,壁面设置为无 滑移壁面^[14],温度给定为527℃;燃烧器和燃尽风 进口边界为速度进口,一次风速度与煤粉颗粒速度 二者的滑移因子取0.8;炉膛出口为定压力出口, DPM条件设置为逃逸。燃烧器出口与炉膛接触部 分,采用网格交界面连接。

图 4 为计算模型网格无关性。本次仿真选取了 145 万,205 万,246 万和 311 万共 4 套不同网格数 量进行网格无关性验证。分别提取了不同网格数量 条件下炉膛出口氧气质量浓度,结果显示,随网格节 点数增加参数变量差距逐渐变小,246 万和 311 万 网格节点数的结果无明显变化,最终选取 246 万网 格节点。

Fig. 4 Grid independence of fluid region

4 工况参数

表1为煤质参数分析。由表1可知,干燥无灰 基挥发分含量仅为12.41%,属于典型的低挥发分 煤种,热值为22840kJ/kg。表2为不同工况下边界 参数。由表2可知,机组在实际运行中,二次风和燃 尽风均由二次风机供风,通过改变挡板开度,来调整 二者的相对比例。仿真中二者总风量是固定的,相 对比例不同,分别计算了3种不同的燃尽风率 37.74%,27.50%和17.74%。实际工程应用中,过低的燃尽风率会导致 NO_x 质量浓度过高,工程中不 宜采用。

☆↓ 床灰 ② 奴 刀 忉

Гав. 1	Proximate	and	ultimate	analyses	of	the	coal
--------	-----------	-----	----------	----------	----	-----	------

工业分析/%			发热量/	元素分析/%					
$V_{\rm daf}$	$A_{\rm ar}$	$M_{\rm ar}$	$\mathrm{FC}_{\mathrm{ar}}$	$kJ \cdot kg^{-1}$	C _{ar}	H_{ar}	O_{ar}	N_{ar}	\mathbf{S}_{ar}
12.41	24.77	5.93	59.31	22 840	60.49	2.67	3.87	0.93	1.34

表 2 不同工况下边界参数

Tab. 2 Boundary conditions of fluid region

夕む		风速/m・s ⁻¹	
石柳	17.74%	27.50%	37.74%
一次风	14.83	14.83	14.83
内二次风	23.91	18.73	13.29
外二次风	10.16	7.96	5.64
三次风	27.52	27.52	27.52
燃尽风1 直流	15.33	23.75	32.60
燃尽风1旋流	15.33	23.75	32.60
燃尽风2直流	18.94	29.36	40.30
燃尽风2旋流	4.69	7.27	9.98

5 计算结果分析

5.1 温度分布

图 5 为燃烧器中心截面温度云图。温度云图显示,CFR 燃烧器使用低挥发分煤后燃烧稳定。一次风/煤粉混合物进入炉内,在高温烟气回流的对流换热作用下,以较高的升温速率迅速完成热解,挥发分从煤粉颗粒表面快速脱离出来参与燃烧。在煤粉射流的后期区域,随着内二次风和外二次风分级参与燃烧过程,前期较高的升温速率在后期变得较为平缓,烟气温度同样趋于平缓。模拟结果与机组实际运行情况相符,说明 CFR 燃烧器能够保证低挥发分煤的稳定燃烧。二次风机总供风量是恒定的,增加OFA 风率会降低二次风量,从而间接减小了主燃区过量空气系数。风粉混合物快速被点燃消耗掉大量O₂,该区域缺氧程度加重,同时较低的二次风量也 使该区域湍流脉动强度减弱。因此,煤粉颗粒的燃 烧速度降低,反映在温度云图上就是主燃区的温度 有所降低,高温区域范围缩小。17.74%和37.74% OFA风率模拟结果显示,冷灰斗至下层燃烧器的炉 内前后墙区域温度云图发生不对称现象,说明这2 个工况下二次风偏离CFR 燃烧器设计范围,机组运 行中会使水冷壁温度不均匀。图5(a)显示,主燃区 过量空气系数偏大意味着的二次风量偏大,使得高 温烟气回流量增加,一次风/煤粉混合物着火更早, 燃烧更充分。反映在温度云图上即主燃区温度偏 高,这不利于抑制热力型 NO_x产生,同时偏大的二 次风量形成的回流区域过大,易产生飞边现象,造成 水冷壁结渣,增加机组运行负担。OFA 风率为 27.5%时,主燃区温度云图分布合理,流场较为 对称。

水平方向温度云图显示,OFA 风率的增加使主 燃区的过量空气系数减小,炉膛中心区域高温区范 围呈缩小趋势。37.74%的 OFA 风率下炉膛水平方 向温度云图呈现不对称现象。

图 6 为炉高方向温度曲线。OFA 风率的增加 使主燃区煤粉释热量减少,从而使冷灰斗上部、主燃 区上部及燃尽区下部区域温度呈降低趋势;主燃区 温度的降低意味着该区域煤粉释热量减小,未燃尽 的残余煤粉随 OFA 在燃尽区的分层补入,进一步反 应燃烧释热,使得燃尽区上部及水平烟道区域温度 呈升高趋势;增大 OFA 风率使得沿炉高方向温度分 布更均衡,减缓了主燃区温度偏高的趋势,同时分两 层分别供入 OFA 也是避免火焰温度过于集中的有 效方案,均有利于抑制低挥发分煤中的 N 元素反应 生成 NO_x。温度曲线反映出的现象与图 5 的云图 情况相一致。

5.2 O₂ 质量分数分布

图 7 为燃烧器中心截面 O₂ 质量分数云图。 17.74%,27.5%及 37.74%的 OFA 风率条件下,大 量燃烧所需空气从燃尽区送入炉膛,使得主燃区 O₂ 维持在较低水平。随 OFA 风率增加,主燃区 O₂ 消 耗速率呈加快趋势,梯度变化更明显,环境氛围为富燃料贫氧性气氛,在贫氧条件下煤粉不完全燃烧会形成大量的 CO,CO 与 NO_x 发生复杂还原反应生成 N₂,从而有效抑制该区域 NO_x 的生成。

Fig. 6 Temperature profile of furnace height direction

水平方向 O_2 质量分数分布云图显示,17.74% 的 OFA 风率条件下,水平方向 O_2 分布均显著高于 另外两个工况,说明主燃区供入了更多的二次风,该 区域贫氧程度得以缓解,燃烧温度会呈现升高,均不 利于抑制污染物 NO_x 生成。随 OFA 风率增加更多 的 O_2 在燃尽风区域参与燃烧,使得主燃区氧气供应 减少, O_2 消耗较快而形成贫氧性气氛,有效抑制污 染物 NO_x 生成。

图 8 为炉高方向 O₂ 质量分数分布曲线。不同 OFA 风率条件下冷灰斗区域 O₂ 质量分数均较低, OFA 风率的增加间接使主燃区化学当量比减小,氧 气消耗更快,O₂ 质量分数维持在较低水平;而在主 燃区上部区域,随空气在燃尽区的分层补入,O₂ 质 量分数呈现增加趋势;随着未燃尽煤粉的进一步燃 烧,O₂ 不断被消耗掉,O₂ 质量分数逐渐降低。在炉 内总化学当量比一定条件下,水平烟道及以上区域 O₂ 质量分数差异相对较小。从图 8 的 O₂ 分布曲线 可明显反映出空气分级燃烧的理念,即保证煤粉气 流流场稳燃前提下,使主燃区处于 O₂ 质量分数较低 状态,在煤粉燃烧接近完成时再将剩余部分空气以 OFA 方式补充,以使其燃尽;从模拟结果和实际运 行情况可知,CFR 燃烧器的浓淡分级结合炉内空气 分级燃烧技术,可使低挥发分煤燃烧更充分并降低 NO_x 生成。

Fig. 7 O_2 contour plot of burner central plane

5.3 NO_x 质量分数分布

图 9 为燃烧器中心截面 NO_x 分布。随着煤粉 被一次风送入炉内,在中心回流区高温烟气回流对 流换热作用下迅速热解燃烧,温度快速上升,挥发分 及焦炭中的 N 元素在高温环境中发生氧化反应形成 NO_x,因此沿着一次风射流方向, NO_x 质量分数 呈升高趋势。随着 OFA 风率的增加,主燃区空气送 入量减小形成贫氧氛围,并且温度水平也呈降低趋势。综合上述因素,污染物 NO_x 生成量均有减小趋势。在 27.50%和 37.74%风率工况下, NO_x 生成量 呈明显降低趋势; 而 17.74% OFA 条件时整个炉内的 NO_x 生成量明显偏高。

图 8 炉高方向 O₂ 质量分数分布曲线 Fig. 8 O₂ profile of furnace height direction

水平方向 NO_x 分布显示,OFA 风率较高的工况 下,CFR 燃烧器出口附近区域的 NO_x 生成明显受到 了抑制,这主要是因为主燃区燃气温度相对偏低 以及贫氧性气氛导致;而 17.74% OFA 条件时,流 场显示燃烧器出口区域存在大面积的 NO_x 高浓度 区域分布,这与温度及 O₂ 质量分数变化趋势 相一致。

图 10 为炉高方向 NO_x 质量浓度分布曲线。随 OFA 风率的增加, NO_x 生成量呈现显著减低的迹 象, 尤其是在主燃区上部和燃尽区这两个区域。这 两个区域是 NO_x 生成的主要区域, 合理的控制两区 域的风量分配, 直接影响主燃区的 O₂ 消耗情况和温 度分布。在 CFR 燃烧器中形成径向空气分级实现 低 NO_x 稳燃, 并适当降低主燃区过量空气系数在炉 高方向形成空气分级, 两个措施相结合形成低化学 当量比的相对低温低氧的还原性主燃区气氛场, 是 降低全局 NO_x 生成量的合理方案。

表 3 为不同工况下炉膛出口基本参数汇总。不同 OFA 风率出口 O₂质量分数相差较小,原因是炉 膛总的过量空气系数是相同的;排烟温度和飞灰可 燃物含量均随 OFA 风率增大呈增加趋势,原因是炉 内空气分级使主燃区煤粉在贫氧氛围下燃烧反应程 度降低,更多的未燃尽煤粉颗粒随高温烟气上升过 程中,在燃尽区随 OFA 的分层补入而进一步燃烧, 炉内的高温火焰中心区域向上移动,煤粉的有效燃 尽距离及煤粉与 O_2 的有效反应时间均被相应缩短, 从而使炉膛出口烟温和飞灰可燃物含量均升高。主 燃区偏低的 O_2 含量和燃烧温度,强还原性气氛下使 NO_x 生成量显著减低,17.74% 燃尽风率条件 NO_x 排放 质量 浓度 相比于 27.50% 燃尽风率提高 11.15%。

Fig. 10 NO_x profile of furnace height direction

表 3 不同工况下炉膛出口基本参数汇总

Tab. 3 Simulation results of furnace outlet region

燃尽风	O ₂ 质量	相)日 (90	飞灰含	NO _x 质量浓
率/%	分数/%)- 四価/し	量/%	度/mg・m ⁻³
17.74	2.22	1 052	4.04	939.3
27.50	2.27	1 072	4.57	845.1
37.74	2.31	1 082	4.9	695.4

表4为改造前后典型参数对比。结合实际工程 经验和数值模拟结果,最终选取的燃尽风率为 27.50%。改造前后机组功率在300 MW时,主要运 行参数接近,空气预热器出口 NO_x 排放质量浓度从 1 272 降为833.4 mg/m^{3[16]},降幅达34.5%。数值 模拟结果显示,27.50% OFA 风率时 NO_x 排放质量 浓度为845.1 mg/m³,与改造后试验值接近。模拟 结果表明,前期方案设计是可行的,同时可为改造后 燃烧调试提供参考。CFR 燃烧器结合炉内空气分 级燃烧技术,可有效降低炉内 NO_x 生成,从而减轻 尾部烟气脱硝装置的运行压力。 表4 改造前后典型参数对比

Tab. 4 Comparison of typical parameters of the boiler before and after reconstruction

参数	改造前	改造后
机组功率/MW	300	300
主蒸汽流量/t ⋅ h ⁻¹	946	941
主蒸汽压力/MPa	16.7	16.46
主蒸汽温度/℃	538	538
空预器入口氧量/%	2.67	2.62
空预器出口烟温/℃	158	141
飞灰含量/%	7.81	4.72
空气预热器出口 NO $_x$ 质量浓度/mg・m ⁻³	1 272	833.4

6 结 论

(1)空气分级条件下,CFR旋流燃烧器能以较高的升温速率使无烟煤及贫煤混煤实现快速着火, 且燃烧状态稳定可靠,模拟结果与实际运行情况 相符。

(2)随 OFA 风率的增加,主燃区过量空气系数 降低,湍流脉动强度减弱,煤粉燃烧速度降低,释热 量减小,主燃区温度有所降低,高温区域范围缩小; 同时主燃区氧气浓度呈降低趋势,消耗速率加快,形 成富燃料贫氧性气氛;温度沿炉高方向更均衡,OFA 分两层供入炉内,有效避免了炉内局部火焰温度过 于集中;径向空气分级的 CFR 燃烧器实现低 NO_x 稳燃,同时适度提高燃尽区 OFA 风率形成炉高方向 空气分级,两措施相匹配形成低化学当量比、相对低 温和低氧的主燃区,是抑制全局 NO_x 生成的合理 方案。

(3)随 OFA 风率的增加,炉膛出口烟温和飞灰 含量稍有升高;综合考虑设计参数和模拟结果, 机组实际运行时 OFA 风率取 27.5%。试验结果显 示,空预器出口 NO_x 排放质量浓度从改前 1 272 mg/m³ 降为 833.4 mg/m³,降幅达 34.5%。

参考文献:

[1] ZHAO Ling-ling, ZHOU Qiang-tai, ZHAO Chang-sui. Flame characteristics in a novel petal swirl burner [J]. Combustion and Flame, 2008, 155(1):277 - 288.

- [2] GU Ming-yan, ZHANG Ming-chuan, FAN Wei-dong, et al. The effect of the mixing characters of primary and secondary air on NO_x formation in a swirling pulverized coal flame[J]. Fuel, 2005, 84(16):2093 2101.
- [3] LI Zheng-qi, ZENG Ling-yan, ZHAO Guang-bo, et al. Particle sticking behavior near the throat of a low-NO_x axial-swirl coal burner[J]. Applied Energy, 2011,88(3):650-658.
- [4] 方庆艳. 低挥发分煤及其混煤燃烧数值模拟与试验研究[D]. 武汉:华中科技大学,2007.
 FANG Qing-yan. Experiment and CFD study on low-volatile and blended coal-fired boiler[D]. Wuhan; Huazhong University of Science and Technology,2007.
- [5] LI Zheng-qi, JING Jian-ping, CHEN Zhi-chao, et al. Combustion characteristics and NO_x emissions of two kinds of swirl burners in a 300 MWe wall-fired pulverized-coal utility boiler [J]. Combustion Science and Technology, 2008, 180(7):1370 1394.
- [6] XUE Shan, HUI Shi-en, ZHOU Qu-lan, et al. Experimental study on NO_x emission and unburnt carbon of a radial biased swirl burner for coal combustion [J]. Energy & Fuels, 2009, 23 (7): 3558 - 3564.
- [7] FAN Wei-dong, LIN Zheng-chun, KUANG Jin-guo, et al. Impact of air staging along furnace height on NO_x emissions from pulverized coal combustion [J]. Fuel Processing Technology, 2010, 91 (6): 625-634.
- [8] LIU Guang-kui, LI Zheng-qi, CHEN Zhi-chao, et al. Effect of the anthracite ratio of blended coals on the combustion and NO_x emission characteristics of a retrofitted down-fired 660 MWe utility boiler[J]. Applied Energy, 2012, 95:196 – 201.
- [9] 陈伟锋,杨维国,高文学,等.58 MW 旋流煤粉锅炉炉内温度场 模拟[J]. 热力发电,2019,48(1):18-23.
 CHEN Wei-feng,YANG Wei-guo,GAO Wen-xue, et al. Simulation of temperature field of a 58 MW swirling pulverized coal-fired boiler[J]. Thermal Power Generation,2019,48(1):18-23.
- [10] 孙俊威,闫维平,赵文娟,等.600 MW 超临界燃煤锅炉生物质
 气体再燃的数值研究[J].动力工程学报,2012,32(2):
 89-95.
 SUN Jun-wei,YAN Wei-ping,ZHAO Wen-juan, et al. Numerical

study on biomass gas reburning in a 600 MW supercritical coalfired boiler[J]. Power Engineering, 2012, 32(2):89-95.

[11] 李 想.1 000 MW 超超临界前后墙旋流对冲锅炉燃烧数值 模拟[D].武汉:华中科技大学,2012.

LI Xiang. Numerical simulation of coal combustion in a 1 000 MW ultra-supercritical opposed swirling fired utility boiler [D]. Wu-han: Huazhong University of Science and Technology, 2012.