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= The Key Problems in the Inverse Design of Laminar Flow Compressor
Blade Profile SAI Qing-yi HUANG Dian-gui ( University of Shanghai for Science and Technology Shang-
hai China Post code: 200093) //Journal of Engineering for Thermal Energy & Power. -2016 31(8). -1~5

Laminar flow compressor blades are type of blades that maintain laminar flow conditions in passages for a wide range
of operating conditions. In this way the aerodynamic efficiency and off-design performance of compressor can then
be considerably improved. This type of blade has several characteristic features including a slightly rearward maxi—
mum thickness location a relatively small leading edge radius and a flat suction side. Based on the review of mainly
relevant literatures the key and basic problems for laminar compressor blade are summarized. A prospective stating
that the aerodynamic performance is closely related to the continuous degree of first-order and second-order deriva—
tives of blade profile is proposed. It is suggested to conduct study on the sensitivity of discontinuous degree for first—
order and second-erder derivative distributions under different values of Reynolds numbers Mach numbers ( super—
sonic area transonic area and shock wave position) and pressure gradients ( favorable pressure and adverse pressure
areas) and then identify the objective laws. In this way the fundamental principle for the deviation of discrete line
in the process of design manufacturing as well as performance prediction for laminar compressor blade is deter—

mined. Key words: axial compressor laminar flow inverse design blade profile transition

= Experimental Study on the Heat Transfer Performance of Carbon Fiber
Heat Exchanger CAO Sheng=ian DUAN Jie WANG Gong ZHAO Buo( School of Automation Engineer—
ing Northeast Dianli University Jilin Jilin China Post Code: 132012) //Journal of Engineering for Thermal Energy
& Power. -2016 31(8). -6~11

This paper proposes a kind of carbon fiber heat exchanger aiming to solve the low temperature dew point corrosion in
the waste heat utilization. Comparative experiments on the coefficient of thermal conductivity between carbon fiber
heat exchanger tube and carbon steel heat exchanger tube have been done. The experiment on heat transfer per—
formance is done by means of the monitoring system for heat exchange in air and gas system which can simulates
the working environment of heat exchangers in power plant. The experimental results show that the thermal conduc—
tivity of carbon fiber heat exchanger tube is higher than that of carbon steel heat exchanger tube while the overall
heat transfer performance of carbon fiber heat exchanger is relatively poor due to the resin coating which is utilized
to prevent water percolation. Key words: carbon fiber heat exchanger thermal conductivity heat transfer perform—

ance

= Study on Heat Transfer Enhancement in Pipes Partially
Filled with Gradient-porous Materials WANG Bai-cun WANG Peng-fei ( College of Chemical and Bio—
logical Engineering Zhejiang University 38 Zheda Street Hangzhou China Post Code: 310027) HONG YiHeng
( School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA) XU
Zhong-bin ( College of Chemical and Biological Engineering Zhejiang University 38 Zheda Street Hangzhou Chi-
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na Post Code: 310027) //Journal of Engineering for Thermal Energy & Power. —2016 31(8). -12~17

Inspired by the unique properties of gradient porous material ( GPM) the authors proposed a novel design to en-
hance the heat transfer in pipes by filling them with GPMs. When Rp ( GPM filling ratio) is 0.8 the effects of gra—
dient pore-size and gradient porosity on the flow and heat transfer performance were studied by examining velocity
distribution friction factor and averaged Nusselt number. The flow and heat transfer performances of GPM filled
pipes were also compared with the ones filled by homogeneous porous materials ( HPM) . Moreover a tradeoff analy—
sis between the GPM and HPM design on the thermal and flow properties was also conducted. The results showed
that the pipes with GPM configuration can effectively enhance heat transfer and reduce the flow resistance in com—
parison with conventional HPM design. Key words: gradient-porous materials fluid flowing heat transfer enhance—

ment numerical simulation

= Numerical Study on the Condensation Phase Transformation of
Water Vapor in Supersonic Nozzle HUA Feng LIAO Guo-jin ( Faculty of Mechanical Engineering and
Automation Liaoning University of Technology Jinzhou Liaoning China Post Code: 121001) //Journal of Engi-
neering for Thermal Energy & Power. -2016 31(8). -18~23

With the real thermodynamic properties of water vapor and the consideration of the effects of the phase transforma-
tion and velocity slip a numerical model for the non-equilibrium supersonic water vapor condensation flow was es—
tablished. This numerical model was first verified by the comparison with the experimental data. Then it was used
to simulate the vapor flow in a supersonic nozzle. The “X-type” condensation shock was clearly captured and its
morphology and formation causes were analyzed. In comparison with the simulation with ideal vapor it shows that
the non-equilibrium steam condensation forms condensation shock leading to the sudden increase in flow field pres—
sure and temperature and in turn abrupt decrease in flow velocity. The droplet radius droplet number growth
trends and humidity after non-equilibrium condensation occurs were also calculated and analyzed. Key words:

doubleluid model water vapor numerical simulation non-equilibrium condensation

= Feasibility Research of Compressor Stator Cascade
Test with Distorted Inlet and Flow Field Analysis XU Jia-hui SUN Peng TENG Lizhi ZHONG Jing-
jun( Marine Engineering College Dalian Maritime University Dalian China Post Code: 116026) //Journal of Engi-
neering for Thermal Energy & Power. —2016 31(8). —24 ~30

In order to study the effects of total pressure distortion on compressor stator by cascade experiments a test method
for a non-uniform stator inlet by changing the installation angle of some adjustable guide vanes ( AGV) was presen—
ted in this paper. Numerical simulation was adopted to study the stator flow field with different inlet conditions.
Study shows that it is feasible to achieve the goal of non-uniform inlet flow angle with the method of AGV. Inlet flow

angle and flow density becomes non-uniform in circumference with the decrease of installation angle and the type of



