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Fig. 1 Basic composition of a split shaft gas turbine
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Fig. 2 Nonlinear simulation model of a split shaft gas turbine
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Tab. 1 Validation of the accuracy of the o - 1 B IR
SN N i
nonlinear model in a rated working condition [ElEiN
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- mis — sy
/r* min ! 3 600 3 600 0
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. -1 ~ >
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el -1 N N
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/K 1049 1 048 0.10 3
/Pa 396645 3.85045  2.78 Fig. 3 Typical thermal faults of main
Ikg v 5™ 66.044  65.527  0.78 components of a gas turbine
/K 777.2 780.3 0.40
/Pa 1.02e +5 1.06e +5 3.92 2
W 20 516 20 219 1.45 Tab. 2 Typical thermal failure criterions of the main components

GC 7% EC 4%
EC 5%
GT 6% ET 2%
GT 6%
GT 6% ET 2%
ET 5%
T4 ET
a2 5%

T4 - ca2 —
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Tab. 4 The mean square error of gradual faults

health parameters of state estimations from EKF
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Tab. 3 The mean square error of abrupt faults

health parameters of state estimations from EKF

EKF
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under the condition of vibration and analyzed was the influence of such vibration parameters as various amplitudes

frequencies and vibration intensities on the heat transfer performance. Within the calculation range the vibration of
the wall surfaces can intensify the heat exchange and can enhance the Nu number by 2.4% at the most outside. In
addition the intensification effectiveness of the Nu number will increase with an increase of the amplitude. It has
been found that the vibration of the wall surfaces can contribute to enhancing the heat exchange and the reason to
enhance the heat exchange lies in the improvement of the synergetic degree between the speed field and the temper—
ature gradient field and in a vibration period there exists an optimum phase angle corresponding to the field synergy
number F¢,. When the amplitude of vibration on the wall surfaces is constant the optimum phase angle will some—
what lag behind with an increase of the vibration amplitude. When the vibration frequency is constant the optimum
phase angle will be stabilized at around 315 degrees. Key words: vibration intensified heat exchange field syner—

gy dynamic grid

= Prediction of the Performance Parameters of a
Gas Turbine and Diagnosis of Its Faults Based on the Extended Kalman Wave Filtration KANG
Wei—guo JIANG Dong—=iang ( National Key Laboratory on Electric Power System and Power Generation Equipment
Control and Simulation Department of Thermal Energy Engineering Tsinghua University Beijing China Post Code:

100084) //Journal of Engineering for Thermal Energy & Power. —2015 30(5) . -702 -707

The extended Kalman wave filtration method was applied in the domain of predicting the performance parameters
and states of a gas turbine and diagnosing its thermal faults. According to a real gas turbine a model for nonlinear
thermal systems was established and based on the data calculated by using the model a linear state and space model
for gas turbines including the healthy parameters of such components as the compressor HP turbine and power tur—
bine of a gas turbine. On this basis an extended Kalman filter was designed. By utilizing the extended Kalman fil-
ter thus designed the healthy parameters of the components relating to six typical thermal faults of a gas turbine in
sudden change and gradual change type respectively were estimated to realize an accurate estimation and diagnosis
of the thermal faults of the splitshaft gas turbine. It has been found that to use the extended Kalman filter to predict
the state of the performance parameters of the split-shaft gas turbine is very appropriate and accurate applicable for
real4ime state monitoring and fault diagnosis of split-shaft gas turbines. To this end the track of the faults triggered

by gradual changes of the performance parameters is on time and the diagnosis is more accurate. Key words: split—
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shaft gas turbine extended Kalman wave filtration performance parameter state estimation diagnosis of

thermal faults

3 = Three Supercharging and Driving Versions for Novel Type Coal
Bed Centralized Transmission Systems ZHAO Hong-bin JTANG Ting YANG Qian ( College of Mechani—
cal Storage and Transportation Engineering China University of Petroleum ( Beijing) Beijing China Post Code:

102249) //Journal of Engineering for Thermal Energy & Power. —2015 30(5) . =708 -714

Under the coal bed gas production conditions in Qin-shui basin three coal bed gas supercharging process system
versions for recuperative type gas turbine cycle solar energy aided gas-steam combined cycle gas—-Kalina combined
cycle driving system were designed and the gas turbine waste heat utilization technologies were applied in the super—
charging and driving of gas in gas transmission pipelines. Based on the total energy system theory and energy staged
utilization principles a model for the three supercharging systems was established by using the software Aspen Plus
and an analysis was also performed of the thermal performance and energy saving potential of various systems. The
analytic results show that the power generation efficiencies of the three versions are 60.42% 66.51% and 65.73%
respectively the costs saved each year are RMB 2. 3983 million yuan RMB 2. 7254 million yuan and 2. 6858 mil-
lion yuan respectively the static investment payback periods are 4. 19 years 4.29 years and 4. 80 years respectively
and the carbon dioxide emissions reduced are 3806.06 t/a 4462 t/a and 4382.60 t/a respectively thus enjoying a
relatively good energy saving potential. Key words: driving by using gas turbines waste heat utilization technolo—

gy Aspen Plus static investment payback period

= Experimental Study of the Visualization of the Flame Configu-
ration During the Combustion of Fuel Oil in a Dual Swirling Flow YUAN Yong-wen GE Bing TIAN
Yin-shen ZANG Shu-sheng ( Turbomachinery Research Institute College of Mechanical and Power Engineering
Shanghai Jiaotong University Shanghai China Post Code: 200240) //Journal of Engineering for Thermal Energy &

Power. —2015 30(5). -715 -719

The plane laser induced fluorescence ( PLIF) technology was used to conduct an experimental study of the visual—

ization of the flame during the combustion of fuel oil in a dual swirling flow at various gas/air equivalent ratios.



