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Tab. 1 Main process variables of the makeup water
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Fig. 1 Cation-anion hybrid bed water treatment flow path
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= Study of the Method for Detecting Faults in the

Makeup Water and Feedwater Treatment Flow Path of a Ultility Boiler Under All Operating Conditions
ZHU Wei ZHANG Shi<ong LIN Yu ( Automation Department College of Power and Mechanical Engi—

neering Wuhan University Wuhan China Post Code: 430072) //Journal of Engineering for Thermal Energy &

Power. —2015 30(1). -66-71

There exists a multi-steady-state operating condition switching-over and their transient process in a complex industri—
al flow path causing the traditional principal component analysis and fault detection method easily to mistakenly a—
larm a fault. As a result the authors proposed a transient process identification method based on the steady-state
factors and an operating condition self-adaptive matching method based on the similarity factors and incorporated
them into the principal component analytic method to form a new fault detection method. The method in question
was used for detecting faults in the makeup and feedwater treatment flow path of a utility boiler and verified by using
the operating data of the flow path under all operating conditions. It has been found that the method under discus—
sion can effectively eliminate the influence of the transient process and enhance the fault detection performance and
reduce the number of faults mistakenly alarmed through a matching of the operating conditions thus accomplishing
the fault detection of the water treatment flow path under all operating conditions. Key Words: boiler makeup wa—
ter and feedwater treatment flow path fulldoad operating condition principal component analytic method transient

process operating condition matching

= Matrix Displacement Method for Calculating the Strength of Tubeshe—
ets in a Condenser ZHOU Xiang LAI Xi-de CHEN Xiao-ming LEI Ming—chuan ( College of Energy
Source and Environment West China University Chengdu China Post Code: 610039) //Journal of Engineering for

Thermal Energy & Power. —2015 30(1). -72-77

By using the matrix displacement method in mechanics a unit discrete and overall analysis of the tubesheet beam
mechanic model proposed in HEI standard were conducted and with the matrix displacement method serving as the
core algorithm the VB. NET language in the environment of VS2010 was used to prepare a special purpose software
and calculate the cases provided in the HEI standard. The calculation results show that compared with the results
given in the calculation examples in the HEI standard the maximum bending moment stress and defection have a
relative error within 1% . Compared with the bending moment value calculated by using the software Anasys-Apdl

that calculated by using self-prepared software has an error within 1% . In the strength analysis and calculation of



