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Fig.5 Sectional view of a heat pipe with

inner helical fins
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Fig. 6 Sectional view of inner helical fins
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Fig. 7 Schematic diagram of the simplified model
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show that the Nusselt number and pressure drop of the fluid inside the spiral tube are all higher than those inside
the straight tube and will increase with an increase of the curvature ratio and Reynolds number. The influence of the
twist rate on the Nusselt number is not evident however to increase the twist rate can lead to a decrease of the pres—
sure drop. The enhanced heat transfer comprehensive performance evaluation coefficient of the spiral tube is invaria—
bly greater than 1 at any Reynolds number curvature ratio and twist rate. Under the condition of low Reynolds num-
bers the spiral tube has very good enhanced heat transfer performance. Key Words: spiral tube enhanced heat

transfer Dean vortex Nusselt number pressure drop

= Comparison of the Correlation Formulae for Cal-
culating the Heat Exchange and Resistance Characteristics of Serrated Spirally-finned Tube Bundles
PEI Yu-feng ( Northeast Electric Power Designing Institute China Electric Power Engineering Consultancy
Group Changchun China Post Code: 130021) MA You-u ( College of Energy Source and Power Engineering
Shanghai University of Science and Technology Shanghai China Post Code: 200093) LIU Hong-wei ( Sanhe Pow—
er Generation Co. Ltd. Sanhe China Post Code: 065201) //Journal of Engineering for Thermal Energy & Power.

~2014 29(6) . 651 -656

The currently available correlation formulae for calculating the heat exchange and resistance characteristics of serra—
ted spirallyfinned tubes were first sorted and summarized. Afterwards based on the wind tunnel test results of 12
serrated spirallyfinned tube bundles the correlation formulae for calculating relevant heat exchange and resistance
characteristics were verified and compared. It has been found that 1) the results predicted by using correlation for—
mulae proposed by various researchers differ greatly 2) the results predicted by using Weierman 1976 ESCOA1979
and Chenl998 correlation formula are in relatively good agreement with the test results all the deviations are within
20% among which the results predicted by using the ESCOA1979 correlation formula is in best agreement with the
test ones its deviation being within 10% 3) under the same conditions compared with the results predicted by u—
sing the correlation formula for continuous spirally-finned tubes the increase in the heat quantity exchanged inside
and outside the serrated spirallyfinned tubes is relatively more but the change in the resistance is not big. Key
Words: enhanced heat exchange heat recovery steam generator waste heat boiler serrated spirally-finned tube

correlation formula

= New Design of a Gravity Type Heat Pipe Based on the Field Syner—
gy Theory SUN Xue-min SONG Wen-wu LIU Yu TIAN Chao—chao ( College of Energy and Environment

West China University Chengdu China Post Code: 610039) //Journal of Engineering for Thermal Energy & Pow—
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To optimize the synergy of the flow and temperature field in a gravity type heat pipe and improve the heat transfer
characteristics inside the tube based on the field synergy theory and according to the actual geometric dimensions
and the field synergy angle etc. factors a spiral fin flow disturbance tapered structure was mounted inside the gravity

type heat pipe. A model for inner spirallyfinned heat pipe was established: the round tube length L ., =500 mm

model
tube diameter D =20 mm inner spiral fin length L, =100 mm the assembly dimension L, =200 mm the working
medium in the tube was water. Through calculation it has been determined that the cone angle of the spiral fin is
12.33 degrees and the lead angle is 25. 91 degrees. By using the CFD software the heat transfer and resistance
characteristics of the flow inside the pipe were numerically simulated. It has been found that the radial heat transfer
performance of the gravity type heat pipe has been improved and when Re =1800 the heat flux Q of the enhanced
heat pipe increases by 18.7% and the flow resistance inside the tube hg increases by 24. 88 times as compared with

those of common gravity type heat pipe. Key Words: gravity type heat pipe field synergy inner spiral fin product

design model simplification computational fluid dynamics

= Study of the Heat Exchange Characteristics of Crude
Oil in a Vertical Tube Bundle at High Rayleigh Numbers ZHAOQO Jian LIU Yang DONG Hang WEI Li-
xin ( National Key Laboratory on Production Ratio Enhancement Northeast Petroleum University Daqing China

Post Code: 163318) //Journal of Engineering for Thermal Energy & Power. —2014 29(6) . —664 —670

By using the standard turbulent flow model and based on the finite volumetric method numerically studied were the
natural convection heat exchange characteristics of crude oil outside a vertical tube bundle with the Rayleigh number
and Pr number being in a range from 1. 12 x 10° —1.02 x 10® and 101 — 127 respectively. It has been found that
with an increase of the centerline distance between any neighboring two heating tubes the tube bundle as a whole
will experience in turn various stages i. e. the heat exchange worsening enhancing stabilizing and declining stage.
The fluid flow induced by the natural convection of the crude oil outside the bottom heating tubes enhances the
speed of the fluid outside the upper tubes and intensifies the heat exchange of the upper tubes and at the same time

changes the temperature distribution in the fluid surrounding the upper tubes leading to a deterioration of the heat
exchange of the upper tubes and a fluctuation of Nu number with time. Moreover the critical centerline distances of
the highest heat exchange intensity and heat exchange enhancement all decrease with an increase of the Ra number
and the role in enhancing the heat exchange will weaken with an increase of Pr number thus to add the number of
the tubes at the top can enhance the average heat exchange intensity of the tube bundle. Key Words: numerical

simulation heat transfer natural convection vertical tube bundle crude oil



