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ature on turbine blades. Key Words: finite volume method weighted least square method gas-heat coupling transi—

tion

= Numerical Study of the Influence of the Rib Vi-
bration on the Flow and Heat Exchange in a Rectangular Channel with Ribs SHEN Jia-huan GE Li-
shun SONG Ping WANG Hong-guang ( College of Energy Source and Power Engineering Shanghai University of
Science and Technology Shanghai China Post Code: 200093) //Journal of Engineering for Thermal Energy & Pow—

er. —2014 29(6). —617 =621

Numerically simulated were the flow and heat exchange characteristics of a rectangular straight channel with ribs be—
ing vibrated in a two-dimensional flow field based on the Fluent mobile grid and UDF ( user defined function) pro—
gramming technology and analyzed was the influence of the amplitude and frequency on the heat exchange charac—
teristics. The numerical calculation results show that compared with the heat exchange in a static rectangular straight
channel with ribs the vibration has a certain influence on the heat exchange and with an increase in the amplitude
and frequency the heat exchange effectiveness intensified by the vibration becomes more and more evident. In the
meantime the vibration can also force the configuration in the flow field inside the channel to be changed and to in—
crease either amplitude or frequency can make the static pressure in the channel quickly increase. During the vibra—
tion the two vortices in different sizes existing between the two ribs inside the channel will become smaller and
smaller one after another with an increase of the amplitude and frequency until they are all finally carried away by
the main stream. Key Words: vibration intensified heat exchange rectangular straight channel with ribs numerical

simulation

= Study of the Water Boiling Heat Exchange Flow Pattern in a
Vertical Rectangular Narrow Channel YANG Li-hui TAO Le-tren HUANG Li-hao ( Shanghai University
of Science and Technology Shanghai China Post Code: 200093) WANG Xiao-song ( Ingersoll Rand Asia and Pa—
cific Ocean Engineering Technology Center Shanghai China Post Code: 200051) //Journal of Engineering for

Thermal Energy & Power. —2014 29(6) . - 622 —626

By employing the visualization method observed was the two-phase pattern of a water flow heated at a single side in
a vertical narrow channel. It has been found that there mainly exist four kinds of flow pattern namely isolated bub—
ble flow combined bubble flow agitation flow and annular flow. Contrasted with the flow pattern charts under the

similar operating conditions given in the literatures it has been discovered that the flow pattern transition has some—



