文章编号:1001-2060(2014)01-0041-04

ORC 系统热力性能计算程序开发

张丽娜,朱 彤,王海鹰,黄晓艳 (同济大学机械与能源工程学院,上海201804)

摘 要:在有机朗肯循环(ORC)系统设计理论基础上,结合 Matlab 2010a 平台及 REFPROP(工质物性)8.0数据库,编写 了低品位余热发电 ORC系统热力性能的计算程序。参照实 例的设计参数,运用该程序进行了 ORC系统的设计,并将程 序运算结果与实际运行参数进行了对比。结果表明,该程序 具有工质筛选、系统循环热力计算以及设备初步选型等应用 功能,且运算结果准确。

关 键 词: 有机朗肯循环; 计算程序; 工质筛选; 循环热力 计算

中图分类号: TK11⁺⁵ 文献标识码: A

引 言

有机朗肯循环(ORC)系统利用低沸点有机工 质回收中低温余热和废热,并将热能转换为电能机 械能。目前,主要应用于太阳能热发电、地热能发电 和工业余热发电等领域。近几年,对ORC系统余热 发电技术的实验研究和理论研究取得了较大进展。 ORC系统设计不同于蒸汽动力循环,需要针对不同 的热源形式筛选不同的有机工质,进而设计计算热 力系统的各个关键部件的热力参数,从而优化匹配 各主要热力设备。其中,仅工质筛选一项工作,就要 考虑工质热物性、安全性、环保性及经济性以满足系 统要求。本研究开发了ORC系统热力性能计算的 程序。借助计算机高速的运算能力和对数据库的灵 活调用功能,该程序可快捷实现包括设备初步选型 在内的ORC系统设计和优化工作,节省设计者的时 间和精力,提高设计效率。

1 程序介绍

1.1 程序编写环境

以 Matlab 2010a 为平台 结合 REFPROP 8.0 工

质物性数据库开发而成。

1.2 程序模块

该程序包括工质筛选、系统循环设计、系统部件 设计、文件以及帮助5个模块。其中,前3个是主要 模块,结构如图1所示。此外,文件模块为用户提供 基本的编辑操作,如文件保存、输出、关闭和打印等 帮助模块为用户提供联机帮助。

图1 主要模块结构框图

Fig. 1 Structural block diagram of the main modules

2 程序设计思想

2.1 工质筛选

2.1.1 工质选用基本原则

除了考虑工质的环保性、安全性和经济性外,应 用于 ORC 系统的理想有机工质还应满足以下 要求^[1~2]:

(1)为避免循环工质在膨胀机内液化而破坏、 降低膨胀机性能,应尽量选择干工质或等熵工质。

收稿日期: 2013-05-17;修订日期: 2013-09-05

(2)为避免跨临界循环可能带来的问题,工质的临界温度应高于系统最高温度。

(3)考虑设备承压能力,系统中最高温度所对应的工质饱和压力不宜过高;同时,为防止外界空气 渗入循环系统,系统中的最低饱和压力应高于环境大气压。

(4)为防止工质在系统中发生堵塞,工质的三 相点温度应低于环境最低温度。

2.1.2 工质热物性

(1) 沸点温度

标准大气压下,大部分有机工质的沸点温度很低,将其冷却到饱和或过冷液体时需较低温度的冷源。ORC系统中常用冷源为自然冷源,如大气环境或水。因此,选择沸点温度高于环境温度的工质是十分有必要的。

(2) 汽化潜热

工质汽化潜热会影响系统循环性能。在确定的 蒸发、冷凝温度下,汽化潜热越大,单位质量流量的 工质在膨胀机中的输出功越大^[3]。据此,在 ORC 系 统中宜选择汽化潜热大的工质作为系统循环工质。

(3) 饱和温度及压力

在 ORC 系统中 通常热源温度决定了工质在系统中的最高压力,冷源温度决定了工质在系统中的最低压力,故工质的饱和性质要与余热资源和冷源温度相匹配。研究表明,ORC 系统中最高压力一般为1~2 MPa,最低压力宜高于大气压力^[4]。

2.1.3 评价指标及标准

基于上述工质筛选的主要考虑因素 相应的评价指标及筛选标准如表1所示。

表1	工质评价指标及筛选标准

Tab. 1 Working medium evaluation index and sifting standard

考虑因素	评价指标 筛选标准	
ᅚᄯᇩᄮ	消耗臭氧潜能值 ODP	ODP≤0.05
环体注	全球变暖潜能值 GWP	GWP≤5 000
安全性	安全等级	A1, A2, A3, B1, B2, B3
44 44 14	干湿性 ds/dT	$ds/dT \ge 0$
	沸点 <i>T</i> _b /K	$T_{\rm b} \ge 273.15$
热物性	汽化潜热 γ/kJ/kg	$\gamma > 100$
	蒸发压力 $P_{ m evop}$ / MPa	$P_{\rm evop} = 1 \sim 2$

注: 安全等级中 A、B 分别代表低毒和高毒; 1、2、3 分别表示不可燃、可燃性和爆炸性。

通过表1的判断标准进行筛选后,可选出设计 条件下适用的候选工质。计算各待选工质在其蒸发 温度范围内的做功能力与系统热效率,并按照热效 率由高到低的顺序排列。

2.2 循环系统热力计算

- 2.2.1 循环系统介绍
 - (1) 基本循环

简单 ORC 系统由蒸发器、膨胀机、冷凝器和工 质泵 4 部分组成,与水蒸气朗肯循环基本一致,其基 本循环系统如图 2 所示。

(b)基本循环T-s示意图

理想情况下,经工质泵增压后的高压工质5s 在蒸发器中等压吸热,变为高温高压饱和或过热蒸 汽1,进入膨胀机等熵膨胀做功后转变为低温低压 蒸汽2s,然后在冷凝器中等压冷凝成饱和液体4, 再经工质泵增压后进入蒸发器中继续蒸发吸热。

但系统在实际运行中,不可避免会有阻力损失 和能量损失。其中,膨胀机由于其自身存在不可逆 损失 实际经历的做功过程为1到2的熵增过程。 定义膨胀机的等熵效率:

$$\eta_{\rm ts} = \frac{h_1 - h_2}{h_1 - h_{2s}} \times 100\% \tag{1}$$

式中: *h*一循环工质比焓 ,kJ/kg; 下角标对应于图 2 (b) 中的状态点。

(2) 回热循环

当热源温度较高或蒸发器出口工质的过热度较高时 膨胀机出口的乏气温度也较高 将造成余热资源的浪费并增加冷凝器的冷凝负担。为此,使用 ORC 回热循环可提高系统的热效率,即用膨胀机出 口较高温度的蒸汽预热工质泵出口较低温度的液态 工质。回热循环系统如图3所示。

Fig. 3 Reheat cyclic schematic diagram and T - s diagram of the ORC system

其中 回热度可以表示为^[4]:

$$\sigma = \frac{h_{5} - h_{5}}{h_{8} - h_{5}} = \frac{h_{2} - h_{3}}{h_{8} - h_{5}}$$
(2)

分子表示回热器中单位质量流量工质的实际换 热量,分母表示回热器中单位质量流量工质的最大 可能换热量;其中,点8是工质从点5经过回热器加 热后所能达到的理想状态点,点8压力等于点5压 力、点8温度等于点2温度。可见,回热度反映了回 热器内基于热力学第二定律的吸热效率。

2.2.2 循环设计关键参数

根据用户给定的冷热源条件,合理确定热力循 环压力、过热度、蒸发温度和冷凝温度是热力计算的 关键,进而再得到其它的状态参数。

(1) 过热度 T_{sup}

由于工质流经管道与设备时存在散热损失,导 致工质在蒸发器出口和膨胀机进口温度不完全相 同,故设计 ORC 系统时需设置一定的过热度。根据 国内外部分 ORC 系统的设计参数,过热度可设置在 20 K 左右。当系统管路非常短且保温较好时,可选 择较小的过热度。

(2) 蒸发温度 T_{ev}

蒸发温度与热源的关系见式(3)。蒸发温度的 大小不仅与蒸发器窄点温差 ΔT_{hp} 和热源温度有关, 还与蒸发器的结构、换热方式、热源的状态(气态、 液态)等因素有关,根据相关文献[59]中蒸发器窄 点温差的选择情况 ΔT_{hp} 取 5~15 K 较为合理。

$$T_{\rm ev} = T_{\rm he \ 2} - \Delta T_{\rm hp} \tag{3}$$

其中,*T*_{he2}根据蒸发器内热平衡方程式确定:

$$T_{\rm he\ 2} = T_{\rm he\ ,l} - \frac{m_{\rm f}\gamma}{m_{\rm he}c_{p_{\rm he}}} \tag{4}$$

式中: T—温度 ,K; m—质量流量 ,kg/s; γ —汽化潜 热 kJ/kg; c_p —平均比定压热容 , $kJ/(kg \cdot K)$; 下角 标 he 表示热源 ,f 表示工质。下角标 1、2 分别代表 热源的不同温度点 ,如图 4 所示。

(3) 冷凝温度 *T*_c

通常冷凝温度受冷源温度、冷源流量以及冷凝器容点温差的影响。冷凝器换热示意图如图 5 所示,冷凝温度可根据式(5)来确定。

 $T_{\rm c} = T_{\rm co\,2} + \Delta T_{\rm cp} \approx T_{\rm co\,3} + \Delta T_{\rm cp} = T_{\rm co\,1} + \Delta T_{\rm c} + \Delta T_{\rm cp}$ (5)

其中,冷却水入口温度 $T_{co,1}$ 可以根据环境温度确定。考虑预冷段换热量不大,在确定冷凝温度时, 中间冷却温度 $T_{co,2}$ 由冷却水出口温度 $T_{co,3}$ 代替进行 计算。相关研究表明^[5~11],冷却水温升 ΔT_c 取 5~ 10 K、冷凝器窄点温差 ΔT_c 取 5~15 K 较为合理。

图 4、图 5 中, ΔT_{hp} 一蒸发器窄点温差,K; ΔT_{cp} 一冷凝器窄点温差,K; ΔT_{c} 一冷却水温升,K;下 角标 ev 表示蒸发 c 表示冷凝。

2.2.3 循环参数确定及热力计算方法

在循环设计的关键参数设定后,通过物性方程 调用 REFPROP 8.0 数据库中工质的物性参数。经 过计算后,便可求得各状态点参数。

2.3 设备选型

ORC 系统的设备包括主要设备与辅助设备。 其中,主要设备(蒸发器、冷凝器、回热器、膨胀机和 工质泵)对系统运行性能有至关重要的影响。因 此,在设计阶段选择与系统设计工况相匹配的设备 是 ORC 系统稳定高效运行的基础。

2.3.1 换热器

换热器选型考虑的主要因素有冷热流体性质、 工作温度和压力、热负荷及流量大小、换热器材料和 换热面积等。其中,换热面积由换热器内热量平衡 计算求得,其余参数可通过前述循环热力计算确定。 2.3.2 工质系

工质泵是 ORC 系统中的升压装置。按工质泵

的特性,一般分为叶片式和容积式两类。其中,叶片 式有离心泵、轴流泵和涡旋泵3种,容积式包括往复 泵和转子泵。通常泵选型需根据工质的物性(主要 关注工质的运动黏度)、泵的扬程和流量等参数,同 时结合泵的结构特点、适用范围进行。

2.3.3 膨胀机

膨胀机作为 ORC 系统中的关键设备,其性能的 好坏对整个系统性能的影响至关重要。

ORC 系统用膨胀机按照工作原理不同,一般分为速度型膨胀机和容积型膨胀机两大类。在设备选型时,要根据系统设计情况选择适用于设计工况的膨胀机,并尽量使膨胀机在高等熵效率和大膨胀比工况下运行。

3 程序实例应用

通过开发的程序,可以快速分析低品位余热发 电系统的工质选择、膨胀机的膨胀比、膨胀机输出功 率、工质泵功耗、蒸发器、冷凝器等的吸、放热量等关 键参数。现参照某一实际运行的 ORC 系统的设计 参数^[12],运用编写程序进行计算,并将运算结果与 实际运行参数进行对比。设定热源为 122.4 °C、流 量 62 m³/h 的热水(密度为 942.4 kg/m³)。

表2~表4分别示出了设计参数输入值、程序 运算结果与实际运行参数的对比和设备选型表。

表2 设计参数输入值

Tab. 2 Input values of design parameters

设计参数	输入值
循环工质	R245fa
余热量 /m ³ • h ⁻¹	62
热源初始温度/K	395
过热度/K	0
冷源温度/K	300
冷源温升/K	5
蒸发器窄点温差/K	6.8
冷凝器窄点温差/K	3
膨胀机等熵效率/%	80
膨胀机机械效率/%	90*
工质泵等熵效率/%	95
工质泵机械效率/%	85
蒸发温度/K	366

注:带*数据根据相关推荐值选取,其余数据参考文献[12]或 由其中数据计算得到

表 3 程序运算结果与实际运行参数对比

Tab. 3 Comparison of program result and operation parameters $% \left({{{\mathbf{F}}_{\mathbf{r}}}^{T}} \right)$

参数名称	实际运行 参数	程序运算 结果	两者相对 误差
膨胀比	5.14	5.08	1.2%
工质流量/kg・s ⁻¹	11.06	11.07	0.1%
蒸发器吸热量/kW	2 479	2 473.2	0.2%
冷凝器放热量/kW	2 217	2 216.2	0.1%
工质泵耗功量/kW	10.4	9.585	7.8%
膨胀机输出功/kW	262.2	238.2	9.2%
系统热效率/%	10.2	9.24	9.4%

表4 设备选型表

Tab. 4 Table of the equipment type selection

设备名称	推荐型式
蒸发器	管壳式、板壳式
冷凝器	板式、管壳式
膨胀机	向心透平
工质泵	离心泵

在该算例中,系统选用的热源及其他设计参数 与文献[12]相同。应用本程序的运算结果和实际 运行参数进行对比,如表3所示,两者相对误差在 10%以内,表明所给出的程序运算结果可信。

4 结 论

在详细介绍程序设计思想的基础上,结合 Matlab 2010a 平台及 REFPROP 8.0 数据库,编写了低 品位余热发电 ORC 系统热力性能的计算程序。并 结合算例说明,该程序具有工质筛选、循环热力计算 以及主要设备选型功能。通过程序运算结果与实际 运行参数的对比,两者相对误差小于 10%,说明本 文所给出的程序计算结果准确,可以应用于 ORC 系 统的设计。另外,程序中所使用的热力学原理为 ORC 系统优化设计提供了理论基础,膨胀机和工质 泵的等熵效率和机械效率是影响 ORC 系统热效率 提高的关键。

参考文献:

[1] 柯 文.基于有机朗肯循环的铝电解槽烟气余热发电技术研究[D].长沙:中南大学 2009.

KE Wen. Research of the organic rankine cycle-based aluminum electrobath flue gas waste heat power generation technology [D]. Changsha: Central South University 2009. [2] 郑 浩 汤 珂 金 滔 , 等. 有机朗肯循环工质研究进展[J].
 能源工程 2008(4):5-11.

ZHENG Hao ,TANG Ke ,JIN Tao ,et al. Advances in the study of the working medium for organic rankine cycles [J]. Energy Source Engineering 2008 (4):5-11.

- [3] 徐 建 董 奥 陶 莉 等. 利用低品位热能的有机物朗肯循环的工质选择[J]. 节能技术 2011 29(167): 204 210.
 XU Jian ,DONG Ao ,TAO Li ,et al. Working medium selection for organic rankine cycles (ORC) utilizing low grade heat energy [J]. Energy Conservation Technology 2011 29(167): 204 210.
- [4] 顾 伟. 低品位热能有机物朗肯动力循环机理研究和实验验 证[D]. 上海: 上海交通大学 2009.

GU Wei. Study of the mechanism and experimental verification of the low grade heat energy organic rankine dynamic cycles [D]. Shanghai: Shanghai Jiaotong University 2009.

WEI Dong-hong ,LU Zhen ,LU Xue-sheng ,et al. Performances analysis of an organic rankine cycle system driven by waste heat sources under the off-design conditions [J]. Journal of Shanghai Jiaotong University 2006 40(8):1398 – 1402.

- [6] Mago P J Chamra L M Srinivasan K et al. An examination of regenerative organic rankine cycle using dry fluids [J]. Applied ThermalEngineering 2008 28(8-9):998-1007.
- [7] Lakew A A ,Bolland O. Working fluids for low-temperature heat source [J]. Applied ThermalEngineering ,2010 ,30 (10): 1262 - 1268.
- [8] Heberle F ,Bruggemann D. Exergy based fluid selection for a geothermal organic rankine cycle for combined heat and power generation [J]. Applied Thermal Engineering ,2010 ,30(11 - 12): 1326 - 1332.
- [9] 吴治坚,龚宇烈,马伟斌,等.双工质循环发电系统换热器温度 参数选择的研究[J].太阳能学报 2012 33(1):63-66. WU Zhi-jian GONG Yu-lie MA Wei-bin et al. Research of the selection of temperature parameters for the heat exchangers of a dual working medium cycle power generation system [J]. Acta Energiae Solaris Sinica 2012 33(1):63-66.
- [10] 严家鵦. 低温热能发电方案中选择工质和确定参数的热力学 原则和计算式[J]. 工程热物理学报 ,1982 3(1):1-7.
 YAN Jia-lu. Thermodynamic principles and formulae for choosing working media and determining parameters of low temperature heat energy power generation versions [J]. Journal of Engineering Thermophysics ,1982 3(1):1-7.
- [11] 肖 松 商 晶 ,吴淑英. 太阳能加热水主要参数对有机朗肯 循环系统的影响[J]. 工业加热 2012 *A*1(1):35-39.
 XIAO Song ,SHANG Jing ,WU Shu-ying. Effect of the main parameters of solar-energy heated water on an organic rankine cycle system[J]. Industrial Heating 2012 *A*1(1):35-39.

(丛 敏 编辑)

tion pressure hits 0.3896 MPa the system as a whole and the flash vaporization-dual working medium section will all have their maximum output power being 6249.2 and 429.2 kW respectively. The thermal efficiency will first increase and then decrease with an increase of the flash vaporization pressure but continuously grow with a rise of the pressure of the dual working medium. Among them the thermal efficiency of the dual working medium cycle is invariably lower than that of the combined cycle. In the most cases that of the single flash vaporization cycle is basically equal to that of the combined cycle while the law governing the variation of the exergy efficiency is identical to that governing the variation of the net output power. **Key words**: low temperature waste heat steam combined cycle flash cycle dual working medium cycle thermodynamic analysis

1 350 MW 二次再热发电机组热力系统设计分析 = Analysis of the Design of a Thermal System for a 1350 MW Secondary Reheat Power Generator Unit [刊 汉]YAN Wei-ping ZHAO Yong-ming ,LI Hai-xin (College of Energy Source ,Power and Mechanical Engineering ,North China University of Electric Power ,Baoding ,China , Post Code: 071003) ,LIU Li-heng (Guodian Science and Technology Research Institute ,Nanjing ,China ,Post Code: 210000) // Journal of Engineering for Thermal Energy & Power. -2014 29(1). -35~40

With the design coordination between both sides of the boiler and steam turbine being taken into account in a comprehensive way set up was a 1350 MW secondary reheat unit principle thermal system. For different configurations of the feedwater pump steam turbines a calculation and analysis were performed with the influence of two versions of feedwater pump-purposed steam turbines on the reheat steam flow rate heat rate of the unit and design of the reheater etc. being quantitatively analyzed ,namely ,back pressure and extraction type and condensing type steam turbine. It has been found that under the rated load operating condition the steam flow rates of the primary and secondary reheater of the back pressure and extraction type feedwater pump steam turbine thermal system are 266 and 289 t/h smaller than those of the condensing type one thus making for the design of the convection heating surface of the boiler. Compared with the steam inlet temperatures of No. 4 and 5 heaters in the condensing type steam turbine system those of the back pressure and extraction type steam turbine thermal system will lower by 350 and 297 °C respectively favorable for the design and operation of the heaters. However the heat rate of the back pressure and extraction type steam turbine thermal system version is 6 kJ/kW. h higher than that of the condensing type steam turbine thermal system version. Under the partial load operating conditions the calculation results show that the primary and secondary reheat steam flow rates of the back pressure and extraction type steam turbine thermal system is still lower than those of the condensing type steam turbine thermal system and the heat rate of the former is still a bit excessively high. Key words: secondary reheat thermal system design of the convection heating surface in a boiler feedwater pump-purposed steam turbine

ORC 系统热力性能计算程序编写 = Development of a Program for Calculating the Thermal Performance of

an ORC (Organic Rankine Cycle) System [开J ,汉]ZHANG Li-na ,ZHU Tong ,WANG Hai-ying ,HUANG Xiaoyan (College of Mechanical and Energy Source Engineering ,Tongji University ,Shanghai ,China ,Post Code: 201804) //Journal of Engineering for Thermal Energy & Power. -2014 29 (1). -41 ~45

On the basis of the theory for designing organic Rankine cycle thermal systems and in combination with the Matlab 2010a platform and Refprop 8.0 database prepared was a program for calculating the thermal performance of a low grade waste heat power generation ORC system. With the design of a flue gas and hot water type ORC system serving as an example such application functions of the program as working medium selection thermal calculation of a cycle of a system and preliminary equipment type selection etc. were exhibited. It has been found that the program can facilitate to analyze compare and optimize a thermal system. **Key words**: organic Rankine cycle computational program working medium selection thermal calculation of a cycle

供热空冷机组汽动泵运行的可行性研究 = Study of the Feasibility of the Operation of Steam-driven Pumps for a Heat Supply Air-cooled Unit [刊,汉]YANG Jia-lin, GE Zhi-hua, DU Xiao-ze, YANG Yong-ping (College of Energy Source, Power and Mechanical Engineering, North China University of Electric Power, Beijing, China, Post Code: 102206) //Journal of Engineering for Thermal Energy & Power. - 2014, 29(1). - 46~52

In the light of the situation that the heat supply and extraction pressures of heat supply air-cooled steam turbines are excessively high in most cases especially those of the condensing type ones which had been modified for heat supply proposed was a mode for the operation of steam-driven pumps during which the steam extracted from the aircooled steam turbines was first introduced into back pressure type steam turbines to do work and drive the feedwater pumps and then to provide heat. With a real unit in a power plant in Shanxi province serving as an example a calculation program was prepared to conduct a check calculation of the exhaust steam pressure and the steam flow rate extracted for heat supply under the rated load operating condition and the off-design operating conditions respectively. It has been found that with the heaters in the heating network serving as the heat sink for the back pressure type steam turbines to drive the feedwater pumps, the output power of the back pressure type steam turbines can be stabilized capable of meeting the power demanded by the feedwater pumps and not influencing the heat supply process. Compared with the cost-effectiveness of the operating mode in which motorized pumps are adopted that of the mode in which steam-driven pumps are employed is better. At the rated main steam flow rate the net heat rate of the unit will drop by about 182 kJ/kW. h. The calculation result of the investment repayment period shows that if the abovementioned operating mode is adopted all the modification cost and investment in the equipment items can be paid back in around three years. Key words: air-cooled unit heat supply steam-driven feedwater pump off-design operating condition energy saving