文章编号:1001-2060(2013)04-0425-06

空气添加方式对甲烷自热重整、制氢 特性影响的热力学分析

闫云飞 张 杰 张 力

(重庆大学 动力工程学院 低品位能源利用技术及系统教育部重点实验室 重庆 400030)

摘 要:应用热力学平衡常数法分析了空气的稀释添加和取 代添加方式对甲烷自热重整、制氢特性的影响,结果表明:增 加空碳比时,两种添加方式都使甲烷水蒸气重整反应程度降 低,以至于逆向;水气转换反应程度在稀释添加时逐渐升高, 取代添加时则降低。增大空碳比 α ,稀释添加方式促进 H_2 产生和 CH_4 转化,而取代添加方式则起抑制作用,当空碳比 α 与 0.5 倍的水碳比 β 之和 α + 0.5 β = const = 2 α 从 0 增大 到 1 稀释添加时 CH_4 转化率由 94.54% 上升到 97.89%,取 代添加时由 99.11%下降到 78.02%。空碳比对稀释添加方 式下的 H_2 /CO 摩尔比几乎无影响,在 const = 2 α 为 0 ~ 2 时 H_2 /CO 摩尔比保持在 4.3~4.4 之间;当 α 为 0、1 和 2 时取 代添加方式 H_2 /CO 摩尔比急剧降低,分别为 6.63、4.30 和 2。

关键词:稀释添加;取代添加;热力学;平衡常数法;自热 重整;制氢;空碳比

中图分类号: 0642; TK911 文献标识码: A

引 言

甲烷制氢工艺主要有甲烷催化裂解、甲烷二氧 化碳重整、甲烷水蒸气重整和甲烷自热重整^[1~10], 前3种工艺都需要从外界添加热量,从而导致反应 装置变得复杂,而甲烷自热重整、制氢通过合理的热 量耦合,可以依靠反应产生的热量自发进行下去,有 利于简化装置和操作条件。

空气作为甲烷自热重整、制氢的重要原料,其添加方式直接影响到 H₂产量和甲烷转化以及 H₂/CO 摩尔比的大小。因此,本研究应用热力学平衡常数 法分析了空气的稀释添加和取代添加方式对甲烷自 热重整、制氢特性的影响,为深入研究甲烷自热重 整、制氢技术和工艺条件的确定提供理论依据。

收稿日期:2012-09-20;修订日期:2012-10-26

基金项目:国家自然科学基金资助项目(50906103)

1 热力学模型

1.1 甲烷自热重整反应体系

甲烷自热重整反应是应用放热的部分氧化反 应、水气转换反应和强吸热的水蒸气重整反应热量 的耦合来实现制氢系统的自热运行。其独立反应式 有3个。

部分氧化:
CH₄ +
$$\frac{1}{2}$$
O₂ = CO + 2H₂ ΔH_{298} = -35.7 kJ/mol

(1)

甲烷水蒸气重整: CH₄ + H₂O = CO + 3H₂ ΔH_{298} = +206.2 kJ/mol (2)

水气转换:
CO + H₂O = CO₂ + H₂
$$\Delta H_{298}$$
 = -41.2 kJ/mol
(3)

建立以上反应的平衡常数关系式,从而得到反 应平衡时各组分的变化情况。

1.2 热力学平衡常数

 CH_4 、 H_2O 、CO、 H_2 、 CO_2 、 O_2 等各物质的热力学 数据参见文献 [11]。标准反应热效应 ΔH^{Θ} 与温度 *T* 的关系可通过基尔霍夫(Kirchhoff)方程来 确定^[11]:

$$d\Delta H^{\Theta}(T) = \Delta C_{p} dT$$
(4)

 \overline{m} :

$$\Delta C = \Delta A_{1} + \Delta A_{2} \times 10^{-3} T + \Delta A_{2} \times 10^{5} T^{-2}$$
(5)

 $\Delta H^{\Theta}(T) = \Delta A_1 \times T + 0.5 \Delta A_2 \times 10^{-3} T^2 - \Delta A_3 \times 10^5 T^{-1} + I_0$ (6)

将 $\Delta H^{\Theta}(298)$ 代入式(6) 中,可求得积分常

作者简介:闫云飞(1978-),男,河南平顶山人,重庆大学副教授、博士.

数 I ₀ 。	
根据范特·霍夫(Vant Hoff) 方程:	
$\mathrm{dln}K/\mathrm{d}T = (\ \Delta H^\Theta(\ T)\ /RT^2)\ \mathrm{d}T$	(7)
和方程:	
$\Delta G^{\Theta}(T) = -RT \ln K$	(8)
可得:	
$\ln K = -I_0/RT + \Delta A_1 \times \ln T/R + \Delta A_2 \times$	$10^{-3} T/2R$
$+\Delta A_3 \times 10^5 / 2RT^2 - I_{\rm K}/R$	(9)
将 $\Delta G^{ ext{ heta}}(298)$ 代入式(9) 成得积分常	\$数 I _K 。
则反应平衡常数与温度的函数关系为	ק:
$\ln K_1 = 5919 T^{-1} + 6.\ 682 \ln T - 4.\ 099$	$\times 10^{-3} T -$
$2.706 \times 10^{-2} T^{-2} - 21.792$	(10)
$\ln K_2 = -22790T^{-1} + 8.156\ln T - 4.42$	$21 \times 10^{-3} T$
$-4.330 \times 10^{3} T^{-2} - 26.030$	(11)
$\ln K_3 = 5087 T^{-1} + 1.560 \ln T - 1.509$	$\times 10^{-4} T -$
$4.762 \times 10^4 T^{-2} - 13.933$	(12)
	的亚衡党

其中 $K_1 \times K_2 \times K_3$ 分别表示反应 $1 \times 2 \times 3$ 的平衡常数。温度较低时 容易发生歧化反应形成积炭,造成 催化剂失活,高温可以抑制积炭的形成^[12],故取 *T* = 1 000 K,考察空气的不同添加方式对甲烷自热重 整反应的影响,可得 $K_1 = 2.304 \times 10^{11}$ $K_2 = 19.256$, $K_3 = 1.252$ 。可见,甲烷部分氧化反应远比甲烷水蒸 气重整反应和水气转换反应容易进行。

1.3 组分平衡模型

设进料气中 $n_{CH_4}^0 = 1 \mod$,空气和水蒸气分别表 示为 $n_{air}^0 \cdot n_{H_2O}^0$ 。定义: 空碳比 $\alpha = n_{air}^0 / n_{CH_4}^0$,水碳比 $\beta = n_{H_2O}^0 / n_{CH_4}^0$ 。

设甲烷部分氧化反应中甲烷转化了 x(mol),甲 烷水蒸气重整反应中甲烷转化了 y(mol),水气转换 反应中 CO 转化了 z(mol)。欠氧条件下氧气完全消 耗,体系平衡时各组分的摩尔含量 n_i 如表 1 所示。

表1 平衡时各组分的摩尔含量

Tab. 1 Mole content of various constituents when a balance is being maintained

组分	n_i / mol
H_2	$0.84n_{air}^0 + 3y + z$
CO	$0.42n_{\rm air}^0 + y - z$
CO_2	z
CH_4	$n_{\rm CH_4}^0 - 0.42 n_{\rm air}^0 - y$
H_2O	$n_{\mathrm{H_{2O}}}^0 - y - z$
N_2	$0.79 n_{\mathrm{air}}^0$
总量	$1.63n_{\rm air}^0 + n_{\rm CH_4}^0 + n_{\rm H_2O}^0 + 2y$

据平衡常数的定义,甲烷水蒸气重整反应和水 气转换反应的平衡方程为:

$$\begin{cases} K_2 = \frac{\left[\text{CO}\right] \left[\text{H}_2\right]^3}{\left[\text{CH}_4\right] \left[\text{H}_2\text{O}\right]} = \frac{\left(0.42n_{\text{air}}^0 + y - z\right)\left(0.84n_{\text{air}}^0 + 3y + z\right)^3}{\left(n_{\text{CH}_4}^0 - 0.42n_{\text{air}}^0 - y\right)\left(n_{\text{H}_2\text{O}}^0 - y - z\right)\left(1.63n_{\text{air}}^0 + n_{\text{CH}_4}^0 + n_{\text{H}_2\text{O}}^0 + 2y\right)^2} \\ K_3 = \frac{\left[\text{CO}_2\right] \left[\text{H}_2\right]}{\left[\text{CO}\right] \left[\text{H}_2\text{O}\right]} = \frac{z(0.84n_{\text{air}}^0 + 3y + z)}{\left(0.42n_{\text{air}}^0 + y - z\right)\left(n_{\text{H}_2\text{O}}^0 - y - z\right)} \end{cases}$$
(13)

其中,[CO]表示 CO 的摩尔浓度,其它类似。 将 K_2 = 19.256, K_3 = 1.252 代入方程(13),利用 MATLAB 编程解方程组,求出反应平衡时各组分的 摩尔含量,进而分析空气的不同添加方式对甲烷自 热重整制氢特性的影响。

2 结果和讨论

定义甲烷转化率:
$$C_{CH_4} = \frac{n_{CO} + n_{CO_2}}{n_{CH_4} + n_{CO} + n_{CO_2}} \times$$

100%;组分生成量: $Y_i = n_i / n_{CH_4}^0$,mol/mol。

保持水碳比β不变,在此基础上增加空碳比α 并定义为空气的稀释添加方式;增加空碳比,同时将 按比例降低水碳比的添加方式定义为空气的取代添 加方式 , const 表示空碳比与 0.5 倍的水碳比之和 , 即 α + 0.5 β = const 则对于空气的取代添加方式 ,水 碳比 β 随空碳比 α 和 const 的变化关系为: β = 2 × (const - α)。考察 const = 1、1.5、2、2.5 和 3 时空气 的两种添加方式对甲烷自热重整制氢反应的影响。 当(const、 α)分别为(1、0.5)、(1.5、0.75)、(2、1)、 (2.5、1.25)和(3、1.5)时,对于空气的两种添加方 式 β 值相等,分别为 1、1.5、2、2.5 和 3 ,此时的空碳 比记为 α_0 。

2.1 空气的不同添加方式对 y、z 值的影响

由于 y 表示甲烷水蒸气重整反应中的甲烷转化 量 z 表示水气转换反应中 CO 的转化量,因此其值 反映了这两个反应的进行程度。

甲烷水蒸气重整反应是可逆强吸热反应,由图 1(a)、图1(b)可以看出,随着空碳比的增加,空气 的稀释添加和取代添加都会导致其反应程度下降, 以至于逆向进行(定义由 CH_4 、 H_2O 生成 CO、 H_2 为 正向反应)。这是因为对于稀释添加方式,空碳比 的增加,甲烷迅速与氧气反应而被快速消耗掉,从而 导致参与水蒸气重整反应的甲烷量减少,抑制了该 反应的进行。对于取代添加方式而言,空碳比的增 加意味着水碳比的减小,且由甲烷部分氧化反应生 成的 CO 和 H_2 增多,从而导致甲烷水蒸气重整反应 程度降低。增大 const,会使反应体系中的空气和水 含量增加,从而有效促进甲烷水蒸气重整反应的发 生。当 const 不变 $\alpha < \alpha_0$ 时,取代添加方式水含量较 大,甲烷水蒸气重整反应更容易发生; $\alpha > \alpha_0$ 时,取 代添加方式下水含量已经很小,不利于该反应进行, 因此此时反应程度低于稀释添加方式。

由图 2 可知 随着空碳比的增加 ,水气转换反应 进行程度在稀释添加时逐渐升高 取代时逐渐降低 , 增加 const 会导致水气转换反应进行程度增大。这 是因为,对于稀释添加,空碳比的增加会导致甲烷水 蒸气重整反应耗水量降低,体系中水含量增大,有利 于水气转换反应的进行。对于取代添加,空碳比的 增加导致水碳比减少,促使水气转换反应进行程度 减小,从而导致水气转换反应进行程度下降。

2.2 空气的不同添加方式对 H₂产量的影响

由图 3(a) 可知,对于空气的稀释添加方式,在 const >1 时,随着空碳比的增加,H,产量逐渐降低; const =1 时 随着空碳比的增加 ,H,产量先升高而后 略有降低。const 的增加有利于氢气的生成。对于 const >1,当 α = 0 时,甲烷迅速与水反应,生成 CO 和 H₂,从而导致反应体系中的 CH₄浓度急剧降低, 同时由于甲烷水蒸气重整反应每消耗一个单位的 CH_4 可以生成 3 个单位的 H₂ ,故此时 H₂产量最大。 随着 α 的增加 ,甲烷部分氧化反应消耗的 CH₄量迅 速增加 反应体系中的 CH₄浓度降低 抑制了甲烷水 蒸气重整反应的进行 使其反应程度逐渐降低 同时 H₂O的消耗量逐渐降低,当α增大到一定程度以 后 ,甲烷水蒸气重整反应逆向进行 ,如 const = 3 ,α = 2.5 时 $\gamma = -0.05$ mol。反应中水浓度的升高有助 于水气转换反应的进行 ,从而使其反应程度逐渐升 高

但是甲烷水蒸气重整反应程度(y)减小的幅度 大于水气转换反应程度(z) 增大的幅度,且甲烷部 分氧化反应每消耗一个单位的 CH₄仅生成两个单位 的 H₂ 从而导致 H₂产量降低。对于 const = 1 此时 α 和 β 都很小, CH₄剩余量还很大, 增加 α 有利于 H₂

的产生,当 $\alpha \ge 0.75$ 时,继续增加空碳比,甲烷部分 氧化反应和水气转换反应生成的 H_2 增加量小于甲 烷水蒸气重整反应生成的 H_2 减小量,从而最终使 H_2 产量在达到最大值后略有下降。

图 3 空气的不同添加方式下 H₂ 产量随空碳比(α) 的变化

Fig. 3 Change of the H_2 production capacity with the air/carbon ratio (α) under various air addition modes

由图 3(b) 可知,取代添加时,随着空碳比的增加,H₂产量逐渐降低且幅度逐渐增大。这是因为空 气的增加迅速消耗掉 CH₄,使体系中 CH₄浓度下降, 而对于取代添加,增加空碳比会导致水碳比减小,抑 制甲烷水蒸气重整反应和水气转换反应,甲烷水蒸 气重整反应在空碳比增大到某一值后逆向,如 const = 3 α = 2.5 时 y = -0.06 mol。而甲烷部分氧化反 应生成的 H₂增加量小于甲烷水蒸气重整反应和水 气转换反应生成的 H₂减小量,最终使 H₂产量降低。

由图 3(a) 、图 3(b) 可知 ,固定 *const* ,α < α₀时 ,

取代添加 H_2 产量比稀释添加大; $\alpha > \alpha_0$ 时, 取代添加 H_2 产量急剧降低,使其值小于对应稀释添加的值。 2.3 空气的不同添加方式对甲烷转化率的影响

由图 4(a)、图 4(b) 可知,随空碳比的增加,稀 释添加时甲烷转化率逐渐增大,取代添加时甲烷转 化率逐渐减小。这是因为对于稀释添加方式,空碳 比的增加会促进甲烷部分氧化反应,却抑制甲烷水 蒸气重整反应 ,且因此而引起的参与反应的 CH₄ 减 小量小于甲烷部分氧化反应中参与反应的 CH₄ 增加 量 从而最终使甲烷转化率升高 ,如 const = 2 α 为 0 和1时,甲烷部分氧化反应消耗的CH₄增加了0.42 mol,而甲烷水蒸气重整反应消耗的 CH₄减少了 0.39 mol,最终甲烷转化率由94.54%上升到 97.89%。对于取代添加方式,空碳比的增加会使甲 烷水蒸气重整反应的下降幅度越来越大,且消耗的 CH₄减小量大于参与甲烷部分氧化反应的甲烷增加 量 最终导致甲烷转化率下降 ,如 const = 2 α 为 0、1 n_2 时,甲烷水蒸气重整反应消耗甲烷量(y值)分 别为 0.99、0.56 和 -0.6 mol ,而参与甲烷部分氧化 反应的 CH₄量分别为 0、0.42 和 0.84 mol ,最终甲烷 转化率分别为 99.11%、97.89% 和 78.02%。 const 的增加有利于更多的 CH₄参与反应,从而导致 CH₄ 转化率升高 ,如取代添加 ,α = 1 ,const 为 1、2、3 时 , CH4转化率分别为41.51%、97.89%和99.59%。当 $\alpha < \alpha_0$ 时 取代添加能得到更高的甲烷转化率; 当 α $> \alpha_0$ 时 稀释添加方式甲烷转化率较高。

2.4 空气的不同添加方式对 H₂/CO 摩尔比的影响 由图 5 可知,随着空碳比的增加,稀释添加时

H₂/CO 摩尔比几乎保持不变 取代添加时 H₂/CO 摩 尔比急剧下降。稀释添加 const >1 时 ,空碳比的增 加会导致 $H_{2x}CO$ 产量均呈下降趋势 , const = 1 时, H₂、CO 产量均呈上升趋势 ,且它们下降和上升幅度 几乎一致,故 H_2 /CO摩尔比保持稳定,如 const = 2, α 分别为 0、1 和 2 时, H₂/CO 摩尔比分别为 4.32、 4.30、4.4。取代添加 const > 2 时 空碳比的增加会 导致 H_2 产量下降、CO 产量增加 ,从而促使 H_2 /CO 摩尔比急剧下降; const ≤2 时,虽然在空碳比增加到 一定程度以后 CO 产量会降低,但此时 H₂降低更 多 H_2/CO 摩尔比仍然呈下降趋势 ,如 const = 2 , α 为0、1、2时,H,/CO摩尔比分别为6.63、4.30、2。 空碳比不变 const 越大 ,H2产量越大 ,而 CO 产量越 小 导致 H_2/CO 摩尔比随 const 的增加而增加。 $\alpha <$ α_0 时 取代添加能得到更高的 H₂/CO 摩尔比; $\alpha > \alpha_0$ 时 稀释添加 H_2/CO 摩尔比更大。

图 4 空气不同添加方式下甲烷转化率 随空碳比(α)的变化

Fig. 4 Change of the CH_4 conversion rate with the air/carbon ratio (α) under various

air addition modes

3 结 论

(1)增加空碳比,两种添加方式都使甲烷水蒸 气重整反应程度降低,以至于逆向进行;水气转换反 应程度在稀释添加时逐渐升高,在取代添加时逐渐 降低。const的增大会同时促进甲烷水蒸气重整反 应和水气转换反应。

(2) 稀释添加,随空碳比的增加,const >1 时, H₂产量逐渐降低,const =1 时,H₂产量先升高而后略 有降低;但取代添加,对于确定的 const,随空碳比的 增加,H₂产量逐渐降低,且下降幅度逐渐增大。

(3) 增加空碳比,甲烷转化率在稀释添加时逐 渐增大,在取代添加时逐渐减小;如 const = 2 α 从 0 增大到 1 稀释添加时 CH₄转化率由 94.54% 上升到 97.89%,取代添加时由 99.11% 下降到 78.02%。 H₂、CO 摩尔比在稀释添加时几乎保持不变,取代添 加时急剧下降。

(4) 对于确定的空碳比 ,*const* 的增大可增大 H₂、甲烷转化率和 H₂、CO 摩尔比。当 $\alpha < \alpha_0$,取代 添加比稀释添加得到更高的 H₂产量、甲烷转化率和 H₂、CO 摩尔比; 当 $\alpha > \alpha_0$ 时 組分变化趋势相反。

参考文献:

- [1] Rani M ,Alizadehdakhel A ,Pour A N ,et al. CFD modeling of hydrogen production using steam reforming of methane in monolith reactors: Surface or volume-base reaction model [J]. International Journal of Hydrogen Energy 2011 36: 15602 – 15610.
- [2] Fan M S ,Abdullah A Z ,Bhatia S. Hydrogen production from carbon dioxide reforming of methane over Ni-Co/MgO-ZrO₂ catalyst: Process optimization [J]. International Journal of Hydrogen Energy 2011 36:4875 – 4886.
- [3] Saraswat S K ,Pant K K. Ni-Cu-Zn/MCM-22 catalysts for simultaneous production of hydrogen and multiwall carbon nanotubes via thermo-catalytic decomposition of methane [J]. International Journal of Hydrogen Energy 2011 36: 13352 – 13360.
- [4] 冉景煜,赵柳洁. 微细腔内甲烷湿空气低温重整特性热力学分析[J]. 物理化学学报 2010 26:2899-2906.
 RAN Jing-yu ,ZHAO Liu-jie. Thermodynamic analysis of the low temperature reforming characteristics of methane and wet air in a micro-chamber [J]. Acta Physico-Chimica Sinica 2010 26:2899-2906.
- [5] Jeong H H Kwak J H Han G Y et al. Stepwise production of syngas and hydrogen through methane reforming and water splitting by using a cerium oxide redox system [J]. International Journal of Hydrogen Energy 2011 36: 15221 – 15230.
- [6] Chen L ,Zhu Q ,Hao Z ,et al . Development of a Co-Ni bimetallic aerogel catalyst for hydrogen production via methane oxidative CO2

reforming in a magnetic assisted fluidized bed [J]. International Journal of Hydrogen Energy 2010 35: 8494 - 8502.

- [7] Wang W ,Wang H ,Yang Y ,et al. Ni-SiO₂ and Ni-Fe-SiO₂ catalysts for methane decomposition to prepare hydrogen and carbon filaments [J]. International Journal of Hydrogen Energy ,2012 ,37: 9058 – 9066.
- [8] 张 力 涨 苗,闫云飞.定壁温下甲烷自热重整产氢暂态特 性数值模拟[J].热能动力工程 2012 27(1):112-116,141. ZHANG Li,ZHANG Miao,YAN Yun-fei. Nuerical simulation of the transient characteristics of the methane self-heat reformingbased hydrogen production at a given wall temperature [J]. Journal of Engineering for Thermal Energy and Power 2012 27(1):112-116,141.
- [9] 于建国,王玉璋,翁史烈.进气管通道直径对直接内部甲烷蒸
 汽重整性能的影响[J].热能动力工程,2011,26(6):760 –
 763,780.

YU Jian-guo, WANG Yu-zhang, WENG Shi-lie. Influence of the passage diameter of an inlet pipe on the direct steam reforming performance of inner methane [J]. Journal of Engineering for Thermal Energy and Power 2011 26(6): 760 – 763 780.

- [10] Pinilla J L , Torres D , Lúzaro M J , et al. Metallic and carbonaceous-based catalysts performance in the solar catalytic decomposition of methane for hydrogen and carbon production [J]. International Journal of Hydrogen Energy 2012 37: 9645 – 9655.
- [11] 叶大伦.胡建华.实用无机物热力学数据手册[M].北京:冶 金工业出版社 2002.
 YE Da-lun, HU Jian-hua. Practical Handbook of Thermodynamic Data of Inorganic Substances[M]. Beijing: Metallurgical Industry Press 2002.
- [12] Korup O Schlögl R Horn R. Carbon formation in catalytic partial oxidation of methane on platinum: Model studies on a polycrystalline Pt foil [J]. Catalysis Today 2012 ,181: 177 – 183.

Siemens 的 600 MW 级 IGCC 发电装置

据《Gas Turiine World》2012 年年度手册报道 Siemens Power Generation 已经推出了 600 MW 级 IGCC(整体煤气化联合循环)动力装置。

列出了该公司商用 600 MW 级 IGCC 标准装置,该装置由 2 台燃气轮机和 1 台汽轮机组成。

燃气轮机	燃气轮机输出功率	汽轮机输出功率	装置总输出功率	装置净输出功率	装置净效率		
5000F	232 MW	(MW)可变	(MW) 可变	600 MW	38 – 40% (HHV)		
* 装置性能将随煤燃料和现场条件而变化。							
额定性能的	り设计依据						
燃料	>	欠烟煤					
现场条件	1	5℃海平面 60%相对	才湿度				
燃气轮机雪	헬号 S	6GT6 – 5000F					
汽轮机型号	3	SST – 5000					
供货方式	ī	商业供货					
动力部分物	寺性						
启动和备用	月燃料	天然气					
燃料灵活性	ŧ î	合成气 高氢合成天然	气				
排放	5	5 mg/kg NO _x ,为达到	更低的 NO _x 排放 ,可	采用 SCR(选择催(化还原) 后处理		
气化部分物	寺性						
气化器类型	빌 : 1	隽带流 ,干式给料4×3	SFG – 500 系列				
氧化剂		氧					
合成气高温	温冷却器 🗧	全水急冷					
酸性气体清	青除 5	Selexol 或 Rectisol					
灰渣处理方	5式 打	非渣					
一体化处理	∎ į	蒸汽 空气			(吉桂明 摘译		

^{*4.57.57.57.57.57.57}

main factor in improving the performance of the AP1000 booster pumps. Under the design condition *the* "positively bent blade" has a head of 12 meters higher than that of the traditional straight blade and an efficiency of 0.6% higher than that of the traditional one while 17 meters higher than that of the "negatively bent blade" and 0.7% higher than that of the "negatively bent one" *t* hus meeting the requirements set for improvement in the performance of the booster pumps installed in the conventional island of the AP1000 nuclear power station. **Key words**: nuclear power booster pump *r*adially-bent blade *B*ezier function *h*ydraulic performance

空气添加方式对甲烷自热重整、制氢特性影响的热力学分析 = Thermodynamic Analysis of the Influence of the Air Addition Modes on the Characteristics of Hydrogen Preparation Through a Self-heat-reforming of Methane [刊 汉]YAN Yun-fei ZHANG Jie ZHANG Li(Education Ministry Key Laboratory on Low-grade Energy Source Utilization Technologies and Systems ,College of Power Engineering ,Chongqing University ,Chongqing ,Chi-na ,Post Code: 400030) //Journal of Engineering for Thermal Energy & Power. - 2013 28(4). -425~430

By using the thermodynamic equilibrium constant method ,analyzed was the influence of the dilution and replacement addition of air on the characteristics of hydrogen preparation through a self-heat reforming of methane. It has been found that with an increase of the air/carbon ratio ,both addition modes will lower the extent of the methane and steam reforming reaction and even turn to the reverse direction. The extent of the water-gas conversion reaction will gradually increase when the dilution addition is adopted and will decrease when the replacement addition is adopted. To increase the air/carbon ratio α can promote the hydrogen production and CH₄ conversion in the dilution addition mode but play a prohibition role in the replacement addition mode. When $\alpha + 0.5\beta = \text{const} = 2$ and α increases from 0 to 1 μ the CH₄ conversion rate will increase from 94.54% to 97.89% in the dilution addition mode and that will decrease from 99.11% to 78.02% in the replacement addition mode. The air/carbon ratio will have almost no influence on the H₂/CO mole ratio in the dilution addition mode. When $\alpha + 0.5\beta = \text{const} = 2$ and α falls in a range from 0 to 2 μ he H₂/CO mole ratio will be kept in a range from 4.3 to 4.4. The H₂/CO mole ratio will decrease sharply in the replacement addition mode λ and 2 respectively when α equals to 0 μ and 2. **Key words**: dilution addition μ -placement addition μ -program from 4.30 and 2 respectively when α equals to 0 μ and 3. **Key words**: dilution addition μ -placement addition μ -program from μ -fibrian method μ -fibrian from from μ to μ -fibrian from μ forming μ -fibrian from μ -fibrian