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Tab. 1 Thermal test data
Py/MW  po/MPa 1, /C HR/KJ - (KW +h) ! St
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. 7900 +
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= 833.4 213 193 7599.0 Fig. 2 Modeling result of the BP neural network
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Tab. 2 Prediction precision of the BP model Tab. 3 Range of the values of the input parameters
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Tab. 4 Comparison of various parameters before

and after the optimization when the circulating

water temperature is set at 19°C

/MW
/MPa  /kJ+(kWeh) ~' /kJ+(kWeh) ~' /g:(kWeh) ~!
12.76 7919. 14
500 31.38 1.07
14.10 7887.76
15.20 7774.10
600 43.56 1.49
16.70 7730. 54
17.65 7704. 30
700 34.68 1.18
19.40 7669. 63
20.10 7637.27
800 27.11 0.92
21.75 7610. 16
22.55 7567. 80
900 24.45 0.83
24.10 7543.35
5 26°C

Tab. 5 Comparison of various parameters before

and after the optimization when the circulating

water temperature is set at 26°C

IMW
IMPa  /kJ-(kWeh) =" /kJ«(kW*h) =" /g-(kWeh) !
12.76 7992.62
500 37.68 1.29
14.50 7954.94
15.20 7862.26
600 59.51 2.03
17.10 7802.75
17.65 7745.98
700 33.41 1.14
19.70 7712.56
20.10 7676. 44
800 44.78 1.53
22.70 7631.65
22.55 7588.05
900 31.44 1.07
24.30 7556. 61
4 19 26 C
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Fig.3 Curves showing the coal consumption
characteristics when the circulating water

inlet temperature is set at 19°C
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= Experimental Study of the Aerodynamic Performance
and Flow Configuration of a Diffuser Cascade with a Large Deflection Angle SAI Qingwi YANG Ai-
ling DAI Ren( College of Energy Source and Power Engineering Shanghai University of Science and Technology
Shanghai China Post Code: 200093) //Journal of Engineering for Thermal Energy & Power. — 2013 28( 1) . —13
~17

Designed was a diffuser cascade with a blade turning angle being 45 degrees and a diffuser factor exceeding 0.6 in
a low speed axial flow fan and measured was the aerodynamic performance of the cascade under the design operating
condition and within a range of the attack angle of +10 degrees. On this basis the PIV technology was used to ob—
tain the flow state inside the cascade under the corresponding operating conditions. It has been found that when the
diffusion factor exceeds 0.6 to increase the geometrical turning angle of the blades can not continuously increase
the actual turning angle of the gas flow however the latter will show a descending tendency and the cascade losses
will increase markedly. The measurement results of the flow inside the cascade show that under the off-design oper—
ating conditions the fluid flow at the rear half of the cascade with a large deflection angle and high diffusion will be
separated from the blade surface causing the cascade wake zone obviously enlarged. This is regarded as the main
reason for a greater flow loss in the cascade. Key words: cascade with a large deflection angle diffuser cascade

flow configuration

BP SA-BBO = Determination of the Optimum Initial
Operation Pressure of a Steam Turbine Unit Based on a BP( Back Propagation) Neural Network and SA-
BBO( Simulated Annealing Biogeography-based Optimization) Algorithm LIU Wei SI Feng—-qi XU
Zhi-gao( College of Energy Source and Environment Southeast University Nanjing China Post Code:210096) YE
Ya-an( Department of Marine Engineering Jiangsu Maritime Vocational Technic College Nanjing China Post

Code: 211170) //Journal of Engineering for Thermal Energy & Power. — 2013 28(1). —18 ~22

To determine the main steam setting pressure of a ultra-supercritical steam turbine unit and optimize its operation
mode on the basis of conducting an experimental study to seek the optimum of the main steam pressure of a 1000
MW steam turbine unit a model controlling the sliding pressure characteristics of a steam turbine unit was estab—
lished by using a BP neural network. Furthermore a biogeographic optimum algorithm based on the simulated an—
nealing was presented thus combining the ability of the BBO algorithm to relatively quickly find out the overall opti—
mal solution and the relatively great ability of the SA algorithm to perform a local search and effectively enhancing
the search precision and convergence speed of the algorithm in question. The SA-BBO algorithm was adopted to seek
the optimum of the main steam pressure by using the model controlling the sliding pressure characteristics of the unit
thus established. It has been found that there exists a relatively big difference between the sliding pressure curves
and the design values of the unit and the sliding pressure curves are affected by the ambient temperature and other
factors. Under the condition of various loads and relevant restrictions the heat rate of the unit after the optimization
can reduce by 25 — 60 kJ/( kW ¢ h) and the power supply coal consumption rate can go down by 0.8 -2

g/(kW « h) . Key words: steam turbine optimum initial pressure neural network simulated annealing biogeo—
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graphic optimization algorithm

LS-SVM = Study of the Surge Fault Diagnosis of an Aeroengine Based
on the LS-SVM( Least Square-Supporting Vector Machine) CAO Huiding QU Chun-gang( College of
Aeronautical Engineering China Civil Aviation University Tianjin China Post Code: 300300) LUO Li=xiao( Avia—
tion Information Company Nanning Wuxu International Airport Nanning China Post Code: 530049) KANG Li-
ping( Maintenance Engineering Department Beijing Aeroplane Maintenance Engineering Co. Ltd. Beijing China

Post Code: 100600) //Journal of Engineering for Thermal Energy & Power. — 2013 28( 1) . —23 ~27

By making use of the gas path parameters of an aeroengine in good health established was a regressive model based
on the least square supporting vector machine for monitoring the state of the aeroengine. The relative error rates be—
tween the predictive values and real ones of the rotating speed( ;) pressure ratio( EPR) and fuel oil flow rate
( FF) of the low pressure compressor monitored by using the model were based to analyze the surge fault and verify
the feasibility of the LS-SVM model as a method for diagnosing the surge fault. It has been found that the N, EPR
and FF relative error rates monitored by using the surge fault model for aeroengines based on the LS-SVM model
can hit9% 11% and 29% respectively thus can be used as the basis for a quick diagnosis of a surge. Key words:

engine surge fault diagnosis gas path parameter relative error rate least square supporting vector machine

= Study of the Optimized Design of the Passive Fault-tolerant
Controller of an Aeroengine FU Qiang FAN Ding( College of Power and Energy Source Northwest Poly—
technic University Xi‘an China Post Code: 710072) //Journal of Engineering for Thermal Energy & Power. —
2013 28(1). -28 ~32

In the light of the fault-tolerant ability of the system of an aeroengine when a fault occurred designed was a fault-tol—
erant control system based on a characteristic structure deployment method. First the features and merits of the pas—
sive fault-tolerant control were analyzed. Then the characteristic structure deployment method was adopted. At the
same time of the limit points of the system being deployed the characteristic vectors were also deployed and the sys—
tem was regulated once again to obtain the stability and reliability of the whole system after a fault has occurred.

Furthermore the concrete design steps of the characteristic structure deployment method were given. Afterwards on
the basis of the method under discussion a passive fault-tolerant controller was designed. Finally at the design oper—
ating point of an aeroengine when a fault occurred to its simulation system i. e. when the parameters were being
perturbated a simulation analysis was performed of the robustness of the fault-tolerant controller system thus de—
signed. The simulation results show that after the characteristic structure deployment the stable state output values
of the system can be adjusted to ones close to those of the original system with the system performance being main—
tained 1. e. the system has a relatively good fault-tolerant ability. Key words: engine fault fault tolerance robust—

ness characteristic structure stability



