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burner. The axial speed gradient and temperature at the outlet of the burner will increase with an increase of the
taperness of the bluff body at the outlet and it is proper to choose 34.21 degrees as the taperness of the bluff body
at the outlet of a burner. Key words: low heating value coal-bed gas partially pre-mixing bluff body flow return

zone numerical simulation

0,/CO0, (V) - NO, N,0 =0,/C0O, Combustion in a Fluidized Bed ( V) dn-
fluence of the Oxygen Concentration on NO,. and N,O /ZHAO Ke TAN Li DUAN Cui4iu LU Qing-

gang ( Engineering Thermophysics Research Institute Chinese Academy of Sciences Beijing China Post Code:

100190) // Journal of Engineering for Thermal Energy & Power. — 2012 27(6) . =702 ~708

A circulating fluidized bed can realize O,/CO, combustion at a high oxygen concentration thus reducing the size of
the combustion chamber and the recycling flue gas quantity. The authors have tested two bituminous coal ranks and
a lignite coal in a 15 kW circulating fluidized bed test system and a 0. 15 kW one respectively. The influence of the
oxygen concentration on the NO, and N,O was studied. The research results show that all the three coal ranks can
realize stable combustion when the oxygen concentration of the primary air ranges from 44.3% to 55.3% and that
of the secondary air is between 43.2% and 60.2% . When the oxygen concentration is about 50% the conversion
rate of nitrogen in the coal to NO, will decrease to 19% —60% of the nitrogen in the coal while the conversion rate
of nitrogen in the coal to N,O will decrease to 20% —81% of the nitrogen in the coal when burning in the air at—

mosphere. Key words: fluidized bed 0,/CO, combustion N,0O NO,

PID = Study of the Control Over the Main Steam Temperature in a
Thermal Power Plant Based on an Improved Neural Network PID ( Proportional Integral and Differential)
Control /GAO Kundun LIANG Xiao WANG Jie ZHANG Heng ( College of Electrical Engineering
Zhengzhou University Zhengzhou China Post Code: 450001) //Journal of Engineering for Thermal Energy & Pow—

er. — 2012 27(6) . =709 ~714

In the light of problems and shortcomings existing in the traditional neural network PID control systems presented
were measures for improvement. For the structure of the network by adding a single-connected network layer the
parameters of the PID controller corresponding to the output of the network were intervened. As for the tactics for

learning the network linkage weight value a parameter index was chosen to real time monitor the error of the sys—
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tem. Within each control periods the error index was based to first determine whether or not it is necessary for the
network to learn. If it is not necessary to learn the PID parameters of the last control period can be used directly for
control. The simulation test results obtained by using the model for main steam temperatures of thermal power plants
show that the improved neural network PID control system is obviously superior to the traditional one in terms of
both dynamic performance and static one. Furthermore the training frequency of the network decreased from 7000
times before the improvement to 1732 times lowering by more than 70% . In addition the robustness of the improved
control system has not yet been affected. Key words: neural network PID ( Proportional Integral and Differential)

learning weight value main steam temperature

U = Analysis of the Measures to Prevent the Thermal Short-
cut of a Vertical U-shaped Embedded Tube Heat Exchanger /LIAO Quan ZHOU Chao CUI Wen-zhi
( Education Ministry Key Laboratory on Low Quality Energy Source Utilization Technologies and Systems College of
Power Engineering Chongqing University Chongqging China Post Code: 400030) // Journal of Engineering for

Thermal Energy & Power. — 2012 27(6) . =715 ~720

Established was a three-dimensional transient numerical model for analyzing a single U-shaped embedded tube heat
exchanger and numerically simulated were various measures to prevent the “thermal short-cut” of the embedded
tube heat exchanger. Under various flow carrier speeds and heat conductivity coefficients of the backfill material the
overall heat transfer performance of a heat isolation plate type and a heat isolation sleeve type embedded tube heat
exchanger as well as a common embedded tube heat exchanger for which no measures was taken to prevent any ther—
mal short-cut were studied respectively. The law governing the influence of different “thermal short-eut” prevention
measures on the overall heat transfer performance of the embedded tube heat exchangers was obtained. Through a
contrast analysis and comparison of the “thermal short-cut” prevention measures which influence the overall heat
transfer performance of the embedded tube heat exchangers and in combination with the operating environment of
actual embedded tube heat exchanger projects the authors proposed that in practical engineering projects it is not
necessary to take any additional measures to prevent any thermal short-cuts of embedded tube heat exchangers. Key

words: embedded tube heat exchanger thermal short-eut numerical simulation

PEMFC = Study of the Temperature Control of a Proton Exchange

Membrane Fuel Cell ( PEMFC) Based on a Regressive Fuzzy Neural Network /LI Chun-hua ( Col-



