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on the suction surface of a stator blade
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— = Development of Enhanced Geothermal Systems
( EGS) —With Soultz Geothermal Farm in France Serving as an Example / WANG Xiaoxing WU
Neng—you SU Zheng ZENG Yu-chao ( Key Laboratory on Renewable Energy and Natural Gas Hydrate Guangzhou
Energy Source Research Institute Chinese Academy of Sciences Guangzhou China Post Code: 510640) // Journal

of Engineering for Thermal Energy & Power. — 2012 27(6) . —631 ~636

Enhanced geothermal systems denote the artificial thermal energy systems economically exploiting the geothermal
energy at a depth of 3 to 10 meters under the ground surface from low penetration rocks and mainly used for power
generation. As the currently important development direction in the geothermal energy domain their investigation
gains a wide attention in the developed countries but in China basically remains virginal ground. Soultz geothermal
farm which is located in the northeast part of France is regarded as an important representative of the EGS current—
ly still in operation in Europe and conducting on-site tests. During its operation in more than 20 years it has pro—
duced a great quantity of achievements in scientific research. By looking back the main understandings of the geo—
thermal farm obtained during its development process the aurthors have summarized the main conclusions concern—
ing the geological prospecting artificially-made storage layer and circulation testing etc. thus offerring refernce for
scientific research and project implementation of the EGS in China. Key words: enhanced geothermal system

( EGS) Soultz artificial heat storage circulation testing

= Influence of the Rotating Blade Solidity of the Elementary
Stage of an Axial Flow Turbine on the Interference Between Its Rotor and Stator /YANG Jie QIAO
Wei-yang ZHAO Lei TAN Hong—chuan ( College of Power and Energy Source Northwest China Polytechnical Uni-
versity Xi” an China Post Code: 710072) // Journal of Engineering for Thermal Energy & Power. — 2012 27

(6). —637 ~642

An unsteady numerical simulation was made of the flow conditions in the elementary stage of an axial flow turbine at
various rotating blade solidities and investigated was the mechanism governing the influence of the rotating blade so—
lidity on the unsteady potential interference on the rotor of the turbine interference on the stator blade wake and ro—
tating blades as well as the unsteady characteristics of the elementary stage. The research results show that in a cer—
tain range of the rotating blade solidity the intensity of the unsteady potential interference on the rotor will rapidly
diminish with an increase of the rotating blade solidity. However in the upstream stator such influencing range has

no obvious relationship with the rotating blade solidity. Any change of the rotating blade solidity will affect the inten—
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sity of the interference between the stator blade wake and rotating blades by the consequent intensity of the stator
blade wake and change of the flow conditions in the passages of the rotor. In the meantime the unsteady characteris—
tics of the elementary stage performance are influenced by the intensity of the stator blade wake interference. Key
words: axial flow turbine rotating blade solidity interference between the rotor and stator of a turbine potential in—

terference unsteady flow

MW / = Analysis of the Flow Inside the Variable
Geometrical Power Turbine Stator/rotor Cascade and Exhaust Gas Duct of a MW Class Gas Turbine

/HOU JianHei GU Chun-wei LIU Hong ( Department of Thermal Energy Engineering Tsinghua University Bei—
jing China Post Code: 100084) // Journal of Engineering for Thermal Energy & Power. — 2012 27(6) . —643 ~

648

The flow field of the variable geometrical power turbine stator/rotor cascade at the end of a MW class gas turbine
may interact with that of the unsymmetrical exhaust gas duct. By using the commercial CFD software CFX the au-
thors have studied the coupled flow field between them at various installation angles of the stator blades. An analysis
of the flow field at the installation angle of the stator blades under the design operating condition shows that the cir-
cumferential asymmetry of the exhaust gas duct will mainly affect the flow field of the rotating blades of the power
turbine leading to a difference of the load between any two rotating blades in the circumferential direction. In the
meantime the distribution of the gas flow angle at the outlet of the rotating blades may also assume an intense non—
uniformity along the circumferential direction. After the stator blades have been rotated by 7 degrees an increase of
the positive attack angle at the inlet of the stator blades may result in a separation in a large area of the suction sur—
face of the stator blades. Therefore the rotating blades have a negative attack angle at the inlet increasing the sepa—
ration area of the pressure surface. At the same time the vorticity of the vortices in the exhaust gas duct will be in—
tensified leading to a marked drop of the efficiency and power output of the power turbine after the installation angle
of the stator blades has been changed. Key words: variable geometrical turbine unsymmetrical exhaust gas duct

numerical simulation

= Study of the Mechanism Governing the Stability Expan—
sion of the Self-circulating Casing Treatment of a Centrifugal Impeller at a Low Rotating Speed /
CHU Wudi BU Yuan-yuan ZHANG Hao-guang( College of Power and Energy Source Northwest China Polytechni-

cal University Xi’an China Post Code: 710072) //Journal of Engineering for Thermal Energy & Power. —2012 27



