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bility analytic programme presented was a combined cycle unit model applicable for the stability analysis of an elec—
tric power system on the basis of an analysis of the mathematical model for conventional combined cycle units. The
authors have applied the genetic algorithm in the model parameter discrimination process and developed a software
for discriminating a model for combined cycle units based on Delphi platform. The application cases show that the
simulation results by using the model are in agreement with the actually measured signals proving that the model
under discussion and the discrimination algorithm are effective thus laying a foundation for subsequent primary fre—
quency modulation and dynamic characteristics analysis of a combined cycle unit. Key words: combined cycle u—

nit genetic algorithm parameter discrimination Delphi

= Numerical Analysis of the Cylindrical Tube Bank Fluid-in—
duced Vibration and Heat Exchange Characteristics /SU Yan-cai GE Peiqi YAN Ke ( Education
Ministry Key Laboratory on High Efficiency and Clean Manufacturing College of Mechanical Engineering Shandong
University Jinan China Post Code: 250061) //Journal of Engineering for Thermal Energy & Power. — 2012 27

(5). 554 ~559

Based on the Workbench and CFX simulation technology numerically analyzed were the fluid-induced lined and
staggered cylindrical tube vibration at various intervals and heat exchange characteristics. The research results show
that within the range of the study the fluid induces the lined cylindrical tube vibration and there exists a critical val—
ue of the cylindrical tube interval L, =3.5 d. When the interval is less than L, the downstream cylindrical tube vi-
bration amplitude and frequency will decrease with a decrease of the interval. When the interval is bigger than L,

the downstream cylindrical tube vibration frequency will no longer change with an increase of the interval. When the
downstream cylindrical tube is located in the tail portion of the wake vortex caused by the upstream cylindrical tube

the vibration amplitude is relatively small and the area-averaged heat exchange effectiveness is relatively good. Un—
der a same operating condition and at an identical interval the fluid-induced downstream lined cylindrical tube vi-—
bration amplitude and frequency are bigger than the staggered cylindrical tube vibration amplitude and frequency. In
a certain range of the interval the heat exchange effectiveness of the fluid-induced downstream lined cylindrical
tubes is superior to that of the staggered ones. Key words: cylindrical tubes in a line arrangement cylindrical tubes

in a staggered arrangement vortex-excited vibration vibration-based heat exchange

= Cold-state Experimental Study of a CFB ( Circulating Fluidized

Bed) Externally-installed Heat Exchanger /MU Xiaozhe SONG Guo-iang SUN Yun-kai LU Qing-—
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gang ( Engineering Thermophysics Research Institute Chinese Academy of Sciences Beijing China Post Code:

100190) //Journal of Engineering for Thermal Energy & Power. — 2012 27(5) . —560 ~ 565

On an externally installed heat exchanger cold-state test stand provided with a new type sliding plate ash control
valve in combination with the latest electrical capacitance tomography( ECT) particle concentration measurement
technology experimentally studied in the cold state were the split4low regulating characteristics of the ash control
valve and the material flow characteristics of the externally installed heat exchanger. The test results show that when
the air quantity of the embedded tube bed increases from 320 m’ /h to 480 m’/h the average pressure drop in the
side of the embedded tube bed will decrease by 0. 16 kPa and the average particle concentration in a section at the
guide tube will increase by 1.03 times promoting the transmission of the material in the embedded tube bed to the
riser. When the air quantity of the empty bed increase from 70 m’ /h to 140 m’ /h the average pressure drop of the
empty bed will lower by 0. 83 kPa that in the side of the embedded tube bed will increase by 0. 13 kPa and the av—
erage particle concentration in a section of the material return tube will decrease by 3. 8% accelerating the trans—
mission of the material in the empty bed to the embedded tube bed. When the opening degree of the sliding plate
valve increases from 10% to 40% the average pressure drop of the externally installed heat exchanger will be up by
0.32 kPa facilitating the the flow division of the material into the externally installed heat exchanger. Key words:

externally installed heat exchanger sliding plate ash control valve regulating characteristics flow characteristics

= Analysis and Improvement of the Profile of an Inertia Particle Sep—
arator /GAO Bing-bing WANG Tong FU Yao GU Chuan-gang ( Education Ministry Key Laboratory on
Power Machinery and Engineering Shanghai Jiaotong University Shanghai China Post Code: 200240) //Journal of

Engineering for Thermal Energy & Power. — 2012 27(5) . —566 ~571

To facilitate an analysis and improvement of the performance of an inertia particle separator at the inlet of a helicop—
ter on the basis of a self-developed parameterization modeling software for separators chosen were seven important
parameters for controlling the sectional area at the outlet of the main flow passage of a separator and eliminate the
sectional area of the passage outlet etc. With the prototype of the currently available separators serving as the refer—
ence specimen a meticulous numerical analysis and comparison were conducted of the performance of the separator
under various geometric parameters. On the basis of a comparison of the particle separation efficiencies and total
pressure losses obtained by using the calculation model presented were two improved models. Compared with the
prototype model the improved models can lead to a very big enhancement of the separation efficiency for large-sized

particles 1. e. increasing from the original 20% to over 95% while the total pressure loss increases by only about



