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Fig. 2 Influence of the spray flow rate on the heat exchange
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on the heat exchange
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= Study of the Load Characteristics of a Heat-supply Unit Based
on an Analysis of Its Off-design Operating Conditions WU Long YUAN Qi( College of Energy Source
and Power Engineering Xian Jiaotong University Xian China Post Code: 710049) DING Jun-qi WANG Xue-tong
( Shandong Electric Power Research Institute Jinan China Post Code: 250002) // Journal of Engineering for Ther—

mal Energy & Power. — 2012 27(4) . —424 ~428

At present there exist universally disputes between power plants and the electric power dispatchment departments
concerning the matter how to determine the dispatchment scope of the heat-power load for a heat-supply unit. On the
basis of the thermal parameters and characteristics of the heat-supply unit together with its off-design operating con—
dition thermal calculation results curves showing the relationship of the heat-power load dispatchment were ob—
tained. Through a comparison with the curves showing the heat-power relationship obtained by using the chart of the
operating conditions of the unit it can be found that the curves obtained from the thermal calculation have an e—
nough calculation precision. Moreover through adopting the thermal calculation method other factors which limit
the load dispatchment of the unit can be taken into account properly thus making the dispatchment scope more ra—
tional and reasonable. At the same time the method in question can effectively predict the influence of a change in
the steam extraction parameters on the load dispatchment of the unit. Through a comparison it can be found that for
a unit with a relatively high heat supply steam extraction pressure to properly reduce the steam extraction pressure
can enhance the power dispatchment scope of the unit. The method under discussion can offer a sound and correct
solution to the load dispatchment problem between a power plant and its heat-power dispatchment department. Key

words: heat supply unit off-design operating condition calculation load dispatchment steam extraction pressure

= Experimental Study of the Atomization Cooling and Heat Transfer
Characteristics of a Closed Type Cycle ZHANG Wei WANG Zhaodiang XU Ming-hai ( College of Stor—
age Transportation and Architectural Engineering China Petroleum University Qingdao China Post Code:

266555) // Journal of Engineering for Thermal Energy & Power. — 2012 27(4) . —429 ~433

With distilled water and anhydrous alcohol serving as the working medium respectively studied was the influence of

the atomization flow rate surface structure and atomization working medium on the heat transfer performance in a
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closed type cycle atomization and cooling system. For the first time from the viewpoint of convection-based heat ex—
change and phase-change heat exchange proportions the authors trimmed and analyzed the test data. It has been
found that with an increase of the atomization flow rate the heat flux density will increase while the phase-change
heat exchange proportion will decrease. When the water atomization flow rate is 227. 1 g/min and temperature on the
surface is 74.32°C  the heat flux density will hit 6. 8 x 10° W/m’. The temperature on the surface has a relatively
big influence on the heat exchange. The higher the temperature the better the heat exchange performance. The heat
exchange of anhydrous alcohol is always superior to that of distilled water especially when the temperature on the
surface is relatively high the intensified heat exchange effectiveness will be more evident. The phase-change heat
exchange proportion of the anhydrous alcohol is also invariably higher than that of distilled water. When the temper—
ature on the surface is 50°C and both flow rates are concurrently 27.52 g/min the phase-change heat exchange pro—
portion of distilled water is only 20.4% but that of anhydrous alcohol reaches 55.5% . Although the micro-structure
surface weakens the convection-based heat exchange capacity it thins the liquid film thickness and enhances the
phase-change heat exchange capacity thus greatly upgrading the heat exchange effectiveness. A non-dimensional
criterion equation reflecting the influence of the temperature on the surface was given. Key words: atomization cool—

ing atomization flow rate heat flux density phase-change heat exchange proportion

= Experimental Study of the Heat Transfer and Re—
sistance Characteristics of a Tube Internally Inserted by a Twisted Tape and a Spiral Coil HAN Ji-
guang WU Xin ZHOU Yi ( College of Energy Source and Environment Southeast University Nanjing China Post
Code: 210096) ZHAN Yue ( Nanjing Shengnuo Heat Pipe Co. Ltd. Nanjing China Post Code: 210009) // Journal

of Engineering for Thermal Energy & Power. — 2012 27(4) . —-434 ~438

Experimentally studied were the heat transfer and resistance characteristics of a tube internally inserted by a twisted
tape and a spiral coil with air serving as the working medium. In the scope of turbulent flow i. e. 3000 < Re <
22000 test data were obtained by using a tube internally inserted with a twisted tape of five kinds of structural pa—
rameters a spiral coil( p =20 mm e =2 mm) and a combination of a twisted tape( ¥ =4.76 ~9.52 X =0.714 ~0.
952) and a spiral coil( p =20 mm e =2 mm) . It has been found that to internally insert a twisted tape can increase
Nusselt Number by 32% —56% and f by 157% —208% and to internally insert a spiral coil can increase Nusselt
Number by 70% -88% and f by 705% —808% while to internally insert a combination of a twisted tape and a spi—
ral coil can increase Nusselt Number by 117% —133% and f by 859% —893% indicating that the internally in—

serted object can obviously increase the in-tube heat exchange coefficient of air and in the meantime however it



