文章编号:1001-2060(2011)04-0453-04

流化床 O_2 / CO_2 燃烧(I) 高氧浓度下的燃烧实验

赵 科¹, 吕清刚¹, 段翠九²

(1. 中国科学院工程热物理研究所,北京 100190; 2. 中国科学院研究生院,北京 100049)

摘 要: 为给大型循环流化床 O_2/CO_2 燃烧系统在高氧气浓 度下的燃烧提供参考 在 O_2/N_2 气氛中 利用提升管直径 100 mm、高 3 000 mm 的循环流化床燃烧实验系统,研究了 3 个 煤种在高氧气浓度下的燃烧特性和温度分布特性。实验结 果表明,平均氧气浓度 34.4%,或局部氧气浓度 75.3% 时均 可以实现稳定、无过热燃烧。龙口煤的烟气中 NO_x 占总氮 氧化物排放量的 89.3% ~ 90.3%,而朔州煤的 NO_x 仅占 30.0%。通过优化配风,烟气中 CO_N_2O 和 NO_x 的浓度可 以分别降低到 45%、94% 和 89%。

关键词:流化床; O₂/CO₂; 高氧燃烧; 煤粉
 中图分类号: TK16 文献标识码: A

引 言

目前,捕集和储存利用煤 O_2/CO_2 燃烧生成的 CO₂,被认为是近期内减缓 CO₂排放较为可行的措施与技术^{[1~2]。} O_2/CO_2 燃烧,是将空气分离获得的 氧气和再循环烟气混合成氧气浓度 21% ~60% 的 O_2/CO_2 混合气,送入炉膛内燃烧,出口烟气经冷却 后一部分作为再循环烟气进入炉膛,另一部分烟气 (CO₂质量分数大于 95%) 经处理后用来埋存^[3~6]。

已经进行的 O₂/CO₂燃烧研究主要集中于煤粉 锅炉^{[7~11]。}在煤粉锅炉的商业示范及中试研究中, 基于避免局部高温而产生结焦及控制热力型 NO_x 等目的,氧气浓度普遍控制在 21% ~ 30%,缺乏更 高氧气浓度下的燃烧实验,而采用较高氧气浓度燃烧,有利于加快燃烧速度、提高燃烧效率、增加容积 热负荷、减少锅炉尺寸。循环流化床内有大量的循 环床料,系统热惯性大,炉膛内传热传质强烈,能避 免局部高温,有利于氧气浓度下的安全稳定燃烧。 因此,本研究设计了循环流化床燃烧实验系统,研究 了 3 个煤种在不同氧气浓度下的燃烧特性,为大型 循环流化床 O₂/CO₂燃烧系统的设计提供参考。 1 循环流化床 0,/CO,燃烧实验

1.1 实验系统

循环流化床燃烧实验系统如图 1 所示,循环流 化床提升管高度 3 000 mm,二次风口中心距布风板 高度 1 500 mm,二次风口以下提升管的直径 70 mm,二次风口以上提升管的直径 100 mm。返料器 为气动 U 型阀结构,采用风管布风。料腿内布置冷 却器,通过调节冷却器的换热量,确保实验系统在不 同热功率下均能稳定运行。

图1 循环流化床燃烧实验系统

实验的燃烧气氛为 O₂/N₂气氛,由纯度 99.9% 的瓶装氧气和空气混合而成。实验系统共使用 6 支 转子流量计测量风量,一次风空气流量计、二次风空 气流量计和播煤风流量计的精度为 1.5%,一次风 氧气流量计、二次风氧气流量计和返料风流量计的

收稿日期:2010-07-23; 修订日期:2011-03-08

基金项目:国家自然科学基金资助项目(50906084);中国博士后科学基金资助项目(20090450578);中国科学院知识创新工程重要方向基金资助项目(KGCX2 - YX - 399 + 3)

作者简介:赵 科(1979-),男 陕西宝鸡人,中国科学院工程热物理研究所助理研究员.

精度为 2.5%。播煤风和返料风为空气,一次风和 二次风依据工况设计调节空气和氧气的流量。实验 系统安装 5 支 K 型热电偶($T_0 \sim T_4$),布风板下 40 mm 处的 T_0 测量一次风温度,提升管内布置的 $T_1 \sim T_3$ 分别位于距布风板 100、550 和 2 950 mm 高度处, 返料器底部布置的 T_4 测量返料温度。

用 KM9106 烟气分析仪在线分析烟气中氧气浓 度 烟气中其余组分用 GASMET DX4000 分析仪测 量 烟气浓度分析数据 1 min 采集一次。炉膛温度 和压力由 Agilent 数据采集板采集,每 20 s 采集一 次,计算机保存。气体流量计由人工读数并记录。 文中气体浓度均指体积百分比浓度。

1.2 实验样品

实验所用的3个煤种的元素分析及工业分析如 表1所示 粒径范围为0~1 mm 粒径分布如图2所 示。选用粒径0.1~0.7 mm 的河沙为实验床料。

图 2 实验用煤的粒径分布

表1 实验用煤的元素分析和工业分析

	神木煤	龙口煤	朔州煤
元素分析			
C _{ar} /%	63.13	65.98	53.76
H _{ar} / %	4.10	3.45	3.47
O _{ar} / %	10.05	13.05	8.71
S_{ar} /%	0.57	0.40	1.53
$ m N_{ar}$ / %	1.02	0.67	0.84
工业分析			
M _t /%	9.1	8.4	7.8
A_{ar} / %	12.02	8.05	23.89
V_{ar} / %	32.08	26.98	26.64
FC _{ar} /%	46.8	56.57	41.67
$Q_{\rm net,ar}/{ m MJ}$ • kg ⁻¹	24.46	24.65	20.63

1.3 实验工况

实验共安排 10 个工况,研究了 3 个煤种在不同 氧气浓度下的燃烧特性和温度分布特性,各工况的 实验条件如表 2 所示。烟气中的氧气浓度控制在 2.0%~7.9%。播煤风和返料风使用空气,流量均 为 1.6 m³/h。一次风和二次风使用空气和氧气的 混合气,通过调节氧气和空气的流量来改变其氧气 浓度。各工况的风量配比如表 3 所示。平均氧气浓 度是一次风、二次风、播煤风和返料风氧气浓度的加 权值,最大局部氧气浓度指 4 股风中最大的氧气 浓度。

表2 各工况的实验条件

工况	煤种	平均氧气浓 度/%	一次风氧气 浓度/ %	二次风氧气 浓度/%	最大局部氧 气浓度/%	烟气中氧气 浓度/%	燃料量 /kg・h ⁻¹	冷却器的换热 量/kW
1	神木煤	20.9	20.9	20.9	20.9	2.0	2.6	9.5
2	神木煤	23.2	24.1	20.9	24.1	6.0	2.6	9.5
3	神木煤	25.6	27.4	20.9	27.4	6.8	2.6	9.5
4	神木煤	28.0	30.7	20.9	30.7	3.6	3.3	14.2
5	神木煤	30.6	34.1	20.9	34.1	4.0	4.1	20.1
6	龙口煤	20.9	20.9	20.9	20.9	3.0	1.5	2.3
7	龙口煤	27.6	27.3	37.0	37.0	4.8	3.5	16.2
8	龙口煤	32.8	27.2	75.3	75.3	7.1	3.0	12.5
9	龙口煤	33.4	34.4	27.9	34.4	7.9	3.0	12.5
10	朔州煤	34.4	33.4	57.8	57.8	7.8	3.7	13.2

		衣 ふ	合土沉	的风重即	566		(m [°] /h)
工况	一次风 空气量	一次风 氧气量	二次风 空气量	二次风 氧气量	返料 风量	播煤 风量	总风量
1	11.4	0.0	6.3	0.0	1.6	1.6	20.8
2	11.4	0.6	6.3	0.0	1.6	1.6	21.4
3	11.4	1.3	6.3	0.0	1.6	1.6	22.1
4	11.4	2.0	6.3	0.0	1.6	1.6	22.9
5	11.4	2.9	6.3	0.0	1.6	1.6	23.7
6	9.1	0.0	2.6	0.0	1.6	1.6	14.9
7	9.1	0.9	6.8	0.8	1.6	1.6	20.8
8	10.2	1.1	2.6	1.7	1.6	1.6	18.8
9	10.2	2.7	2.6	0.3	1.6	1.6	19.0
10	9.1	2.3	2.6	0.8	1.6	1.6	17.9

2 实验结果及分析

2.1 燃烧特性

各工况测点温度分布如表4所示。工况1~工 况5是神木煤在不同氧气浓度下的燃烧实验,平均 氧气浓度由20.9%增加到30.6%,最大局部氧气浓 度由20.9%增加到34.1%。实验中温度稳定,提升 管内3个测点的温度差不超过75℃,实验结束后清 理炉内床料,未发现结焦颗粒。表明循环流化床在 较高氧气浓度下可以安全、稳定燃烧。

工况	T_1 / °C	T_2 / °C	T_3 / °C	T_4 / °C
1	753	803	760	548
2	726	755	757	464
3	741	776	755	502
4	739	796	769	550
5	792	865	837	623
6	774	792	679	396
7	821	870	868	573
8	812	837	819	568
9	825	856	801	583
10	759	810	770	462

表4 各工况下的温度分布

基于神木煤实验,对龙口煤和朔州煤在高氧气浓度下的燃烧特性进行实验,进一步提高平均氧气浓度和最大局部氧气浓度。龙口的平均氧气浓度由20.9%增加到33.4%,最大局部氧气浓度最高达75.3(工况8)。朔州煤的平均氧气浓度34.4%,局部最大氧气浓度57.8%。可以看出,实验过程中提升管内温度稳定,提升管内3个测点的温差不超过

50 °C .

工况 8 ~ 工况 10 的平均氧气浓度最高,均稳定运行 30 min 以上,整个工况内温度平稳,实验结束后清理炉内未发现焦块。可见,循环流化床在 O_2/N_2 气氛下,平均氧气浓度 34.4%,或局部氧气浓度 75.3%时,均可以实现稳定、无过热燃烧。

实验的燃烧气氛为 O_2/N_2 ,实际 O_2/CO_2 燃烧中 的燃烧气氛为 O_2/CO_2 ,而 CO_2 的焓值高于 N_2 。即 相同氧气浓度下 , O_2/CO_2 气氛下的燃烧温度低于 O_2/N_2 燃烧气氛的燃烧温度。如折算 34.4% $O_2/65$. 6% N_2 燃烧气氛下的燃烧温度到 O_2/CO_2 燃烧气氛 中 则 O_2/CO_2 气氛下的平均氧气浓度可以超过 40%。可以推测,在 O_2/CO_2 燃烧气氛下,平均氧气 浓度 40% 完全可以安全稳定燃烧。另外,工况 8 和 工况 10 的最大局部氧气浓度分别达到了 75.3% 和 57.8%,工况均运行 30 min 以上,运行过程稳定且 无结焦,证明循环流化床的平均氧气浓度即使在 O_2/N_2 气氛下仍有进一步提高的可能。

2.2 烟气成分及飞灰含碳量

工况 8 ~ 工况 10 的烟气成分数据如表 5 所示, N₂O 和 NO_x 的生成量如图 3 所示。对比工况 8 和 工况 9 ,工况 8 的 CO、N₂O 和 NO_x 浓度均低于工况 9 ,烟气中 CO、N₂O 和 NO_x 的浓度分别为工况 9 的 45%、94% 和 89%。由表 2 和表 4 可知 ,工况 8 和工 况 9 的煤种相同 ,烟气中氧气浓度和温度水平都接 近,排放不同主要是因为两个工况的配风不同 ,工况 8 的一次风中氧量占总氧量的 53% ,而工况 9 的一 次风氧量占总氧量的 77%。可见 ,高氧气浓度下燃 烧时 ,适当降低一次风氧量 ,优化系统配风 ,仍可以 降低燃烧过程的 CO、N₂O 和 NO_x 排放浓度。龙口 煤的 NO_x 占总氮氧化物排放量的 89.3% ~ 90.3% , 而朔州煤的 NO_x 仅占总氮氧化物排放量的 30%。 可见 ,高氧气浓度下燃烧时 ,煤种对 N₂O 和 NO_x 的 比例影响很大。

表 5 烟气成分(折算为 $O_2 = 6\%$)

	工况 8(龙口煤)	工况 9(龙口煤)	工况 10(朔州煤)
H ₂ 0/%	8.68	7.97	12.7
CO2 /%	28.2	28.1	22.2
CO/mg•m ⁻³	197	440	672
$N_2O/mg \cdot m^{-3}$	147	156	650
$NO_x/mg \cdot m^{-3}$	1 224	1 383	282

实验中氧气浓度高于空气 ,烟气中 CO_2 浓度为 22.2% ~28.2% ,高于空气燃烧时的 CO_2 浓度(13% ~15%)。如果采用 O_2/CO_2 循环燃烧 ,用再循环烟 气代替本实验中空气中的 N_2 ,以工况 8 ~ 工况 10 为 例 ,烟气中约有 65% 的 N_2 , O_2/CO_2 气氛燃烧时这部 分 N_2 被 CO_2 替代 ,则烟气中 CO_2 的体积分数达到 87.2% ~93.2%。

2.3 燃烧效率

表6是工况8、9、10的飞灰含碳量及燃烧效率。 飞灰由两部分组成,一部分是水冷飞灰,另一部分是 布袋飞灰。飞灰含碳量是指两部分飞灰按质量加权 计算得出的飞灰含碳量。工况 8~工况 10 的飞灰 含碳量分别为 22.6%、15.6% 和 25.8%, 飞灰含碳 量整体偏高。主要是因为实验系统的停留时间较 短 仅 1.6 s 而实际循环流化床的停留时间为 4~6 s。随着实验系统放大、停留时间增长,飞灰含碳量 完全可以降低。工况8和工况9同为龙口煤,工况 9的飞灰含碳量较低,原因是工况9的一次风氧气 浓度和一次风氧率的比例比工况 8 高,有更多的氧 气和煤在密相区内燃烧 提供了更长的接触时间和 燃烧时间,从而提高了燃烧效率,降低了飞灰含碳 量。工况10的飞灰含碳量为25.8%,高于工况8 和工况9,主要是因为工况10的整体温度较前两个 工况低 30~60 ℃。此外 ,工况 10 的煤种和前两个 工况也有所不同。

表6 飞灰含碳量及燃烧效率

	工况8	工况9	工况 10
水冷飞灰的比例	31.0	45.5	23.9
布袋飞灰的比例	69.0	54.5	76.1
 飞灰含碳量	22.6	15.6	25.8
燃烧效率	95.6	98.3	90.3

3 结 论

在 3 000 mm 高的循环流化床燃烧实验系统上

对 3 个煤种进行了高氧浓度下的燃烧特性实验,得 出以下结论:

(1)循环流化床在 O₂/N₂气氛下 3 个煤种均在 高氧气浓度下实现了稳定燃烧。平均氧气浓度 34.
4%,或最大局部氧气浓度 75.3% 时均可以实现安全、稳定、无结焦燃烧。氧气浓度较煤粉炉 O₂/CO₂ 燃烧的商业示范电站有大幅度提高。

(2) 龙口煤的燃烧排放烟气中 NO_x 占总氮氧 化物排放量的 89.3% ~90.3% 而朔州煤的 NO_x 仅 占总氮氧化物排放量的 30%。

(3) 通过优化配风 烟气中 CO、N₂O 和 NO_x 的 浓度分别可以降低到 45%、94% 和 89%。

研究结果表明,大型循环流化床 O₂/CO₂燃烧 时,可以采用较高的平均氧气浓度和局部氧气浓度, 平均氧气浓度可以达到 34.4%,局部氧气浓度可以 达到 75.3%。

参考文献:

- [1] OKAWA M ,KIMURA N ,SEO Y ,et al. CO₂ abatement investigation using O₂ /CO₂ combustion and IGCC//Interlaken: Greenhouse Gas Control Technologies [C]. Elsevier science BV ,Kidlington , Oxford ,UK ,1998. 575 – 579.
- [2] BUHRE B J P ,ELLIOTT L K ,SHENG C D ,et al. Oxy-fuel combustion technology for coal – fired power generation [J]. Progress in Energy and Combustion Science 2005 31(4):283 – 307.
- [3] HUANG X Y JIANG X M ,HAN X X ,et al. Combustion characteristics of fine-and micro-pulverized coal in the mixture of O₂ /CO₂
 [J]. Energy & Fuels 2008 22(6): 3756 - 3762.
- [4] TAN Y W ,CROISET E ,DOUGLAS M A ,et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas [J]. Fuel , 2006 , 85 (4): 507 – 512.
- [5] LIU H ,ZAILANI R ,Gibbs B M. Comparisons of pulverized coal combustion in air and in mixtures of O_2/CO_2 [J]. Fuel 2005 ,84 (7-8):833-840.
- [6] LIU H ZAILANI R ,GIBBS B A. Pulverized coal combustion in air and in O₂/CO₂ mixtures with NO_x recycle [J]. Fuel ,2005 ,84 (16):2109-2115.
- [7] 黄志军,邹 春,初 琨,等. 0₂/CO₂循环燃烧中 NO_x 的中试 实验研究[J]. 工程热物理学报 2009 30(12): 2141-2144.
- [8] 邹 春,黄志军,初 琨,等. 燃煤 O₂/CO₂循环燃烧过程中 SO₂与 NOx 协同脱除的中试研究 [J]. 中国电机工程学报, 2009 29(2):20-24.
- [9] 李庆钊 赵长隧 武卫芳 等. 0₂/CO₂气氛下燃煤 SO₂排放特性 的实验研究[J]. 中国电机工程学报 2009 29(20): 41-46.
- [10] 李庆钊 赵长隧,武卫芳,等. O₂/CO₂气氛下燃煤 NO 排放特性 的实验研究[J]. 中国电机工程学报 2009 29(23): 33 - 39.
- [11] 段伦博 周 骛 ,卢骏营 ,等. CO₂浓度对煤焦燃烧及污染物排 放特性影响的试验研究[J].动力工程 2009 29(6):571-575.

(%)

factors of the model. To a certain extent, there existed no so-called mismatch problems of the model, fully displaying the merits of non-linear controllers and providing a definite practical value for engineering projects. **Key words**: ARDC (active disturbance rejection controller), non-linear, uncertainty system, robustness, high order large time-delay system

模糊自适应内模控制在电加热锅炉温度控制中的应用研究 = Study of the Application of the Fuzzy Self-adaptive Inner Model-based Control in the Temperature Control of an Electrically-heated Boiler [刊,汉] GUO Qi, REN Fang (College of Environment and Chemical Engineering, Yanshan University, Qinhuangdao, China, Post Code: 066004), YANG Tian-feng, LIU Zhen-yong (Qinhuangdao Tonglian Industry Co. Ltd., Qinhuangdao, China, Post Code: 066102) // Journal of Engineering for Thermal Energy & Power. – 2011, 26(4). – 449 ~ 452

In the light of such specific features of the temperature control in the clamping sleeve of an electrically-heated boiler as non-linear , time lagging and disturbance-susceptible etc. , presented was a fuzzy self-adaptive inner model-based control method in the JX-300X DCS system. Through establishing an inner model , the fuzzy principles were utilized to make an on-line adjustment of the time constant T_f of the filter inside the inner model controller. The SCX language was adopted to design a program by using the fuzzy self-adaptive inner model-based control algorithm and a control test was conducted on a DCS (distributed control system) platform. The test results show that the performance of the fuzzy self-adaptive inner model-based control is enhanced greatly when compared with the conventional PID (proportional , integral and differntial) control , featuring a quick response , a near-to-zero overshoot , a short regulation time duration , a high stabilization precision , a strong distrubance-resistant capacity and robustness. **Key words**: distributed control system , fuzzy self-adaptive inner-model-based control , PID (proportional , integral and differntial) control

流化床 O_2/CO_2 燃烧(I) 高氧浓度下的燃烧实验 = O_2/CO_2 Combustion on a Fluidized Bed (I) -Combustion Experiment at a High Oxygen Concentration [刊,汉] ZHAO Ke, LU Qing-gang (Engineering Thermophysics Research Institute, Chinese Academy of Sciences, Beijing, China, Post Code: 100190), DUAN Cui-jiu (Postgraduate College, Chinese Academy of Sciences, Beijing, China, Post Code: 100190) // Journal of Engineering for Thermal Energy & Power. - 2011, 26(4). -453~456

To provide reference for the combustion at a high oxygen concentration in a large-sized circulating fluidized bed O_2/CO_2 combustion systems, experimentally studied were the combustion and temperature distribution characteristics of three types of coal at a high oxygen concentration in the O_2/N_2 atmosphere in a circulating fluidized bed-based com-

bustion test system with a riser having a diameter of 100 mm and a height of 3000 mm. The test results show that when the average oxygen concentration is 34.4% or the local oxygen concentration is 75.3%, a stable combustion without any superheating can be accomplished. The NO_{χ} contained in the flue gas of the Longkou-originated coal accounts for 89.3% ~90.3 of the total NO_{χ} emissions while that of the Shuozhou-originated coal occupies only 30. 0%. By optimizing the air distribution, the concentration of CO $_{\gamma}NO_{2}$ and NO_{χ} in the flue gas can be reduced to 45%, 94% and 89% respectively. **Key words**: fluidized bed $_{\gamma}O_{2}/CO_{2}$, combustion at a high oxygen concentration, pulverized coal

基于制取流体冰的液-液雾化液滴粒径分布研究 = Study of the Liquid Drop Diameter Distribution of a Liquid-liquid Atomization Based on Preparation of Slurry Ice [刊 汉] LIANG Kun-feng, GAO Chun-yan, WANG Lin (Henan University of Science and Technology, Luoyang, China, Post Code: 471003) // Journal of Engineering for Thermal Energy & Power. - 2011, 26(4). -457~460

The process to form liquid drops through a liquid-liquid atomization is regarded as a dynamic and random phenomenon. The sizes of the liquid drops thus formed are uncertain and under the condition of a great many tests , however , the liquid drop diameters assume a statistical regularity. To study the diameter distribution regularity under different test conditions , the mathematical statistic method was used to conduct an analysis. It has been found that under different test conditions , the particle diameters of the atomized liquid drops assume a certain distribution form and with an increase of the jet flow rate , the change in the medium diameter of the particle diameter distribution as a whole shows a descending tendency. Through a Pearson χ^2 fitting dominancy test , when the liquid drop particle diameter distribution is supposed to perform the Rosin-Rammler distribution function , the significance level under all the test conditions will invariably attain 0.01. The mass fraction at four particle diameters under different test conditions were calculated based on the Rosin-Rammler density distribution function. When the jet flow rate was 50 mL/min , the liquid drop particle diameters were centralized in a range of 0.7 ~ 1.0 mm. **Key words**: slurry ice , liquid-liquid atomization , particle diameter distribution , Pearson χ^2 fitting dominancy test , distribution function

热光伏发电系统水冷散热特性研究 = Study of the Characteristics of a Water-cooled Heat Dissipating Device in a Thermophotovoltaic Power Generation System [刊 ,汉] YANG Tao, HAN Yu-ge, TAN Hong, XUAN Yi-min (College of Power Engineering, Nanjing University of Science and Technology, Nanjing, China, Post Code: 210094) //Journal of Engineering for Thermal Energy & Power. - 2011, 26(4). - 461~465

Designed was a set of water-cooled heat dissipating device to control the operating temperature of photovoltaic cells. On this basis , the variation law governing the cell temperature and the pressure loss of the heat dissipating device at