文章编号:1001-2060(2011)03-0323-05

船用增压锅炉风烟系统的流体网络模型

费景洲,马修真

(哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨 150001)

摘 要: 增压锅炉和涡轮增压机组的风烟系统具有很强的热 力耦合关系,风烟系统的阻力特性对二者的匹配性能具有重 要影响。为此提出一种基于流体网络的增压锅炉风烟系统 建模方法,建立增压锅炉风烟系统各部分的流网模型,采用 流体网络解算增压锅炉风烟系统的流量、压力耦合关系,仿 真结果和实验数据对比表明该模型具有较高的仿真精度。 在此基础上进一步分析了风烟阻力变化对涡轮增压机组性 能的影响,结果表明,锅炉烟风阻力增大导致压气机耗功增 大,烟气涡轮提供功率减小,辅助汽轮机补充功率增加,锅炉 供汽能力下降。本研究结果可以为增压锅炉涡轮增压机组 匹配设计提供参考。

关 键 词: 增压锅炉; 风烟系统; 流体网络; 仿真 建模; 阻力 特性

中图分类号: TK222 文献标识码: A

引 言

船用增压锅炉是舰船蒸汽动力装置的主要发展 方向,加强对增压锅炉的研究十分必要^[1]。目前对 增压锅炉的研究大多从机组的功率平衡角度出发, 建 立稳态或者 准稳态模 型来分析机 组匹配性 能^[2~4]。实际上,涡轮增压机组和增压锅炉间具有 很强的热力耦合关系,锅炉经济器出口烟气推动烟 气涡轮做功,驱动压气机产生炉膛燃烧所需空气,锅 炉出口烟气的做功能力影响涡轮增压机组的空气流 量,而空气流量又影响烟气的做功能力。增压锅炉 中空气 烟气的耦合关系直接影响增压锅炉与涡轮 增压机组之间的匹配性能。为此,本研究提出一种 基于流体网络的涡轮增压机组风烟系统建模方法, 通过流体网络解算增压锅炉中空气 烟气流量、压力 间的耦合关系,进一步研究增压锅炉阻力变化对涡 轮增压机组和增压锅炉匹配性能影响。

1 流体网络模型

蒸汽动力装置数学模型主要由设备模型和流体

收稿日期: 2010-06-23 修订日期: 2010-07-02

网络模型组成。由于流体管路内部机理不明确,因此把烟气、蒸汽、水等工质在管路和设备内的传输和 瞬变问题简化成只求流体网络各个节点的瞬态压力 和各个支路上流量的问题^[5]。

文献 [6]比较了节点压力法和网络法两种目前 常用的流体网络建模方法,认为采用全节点计算的 网络法性能优于使用单节点计算的节点压力法。流 体网络模型采用一种全节点流体网络建模方法,将 流网中所有节点建立压力方程联立求解。

1.1 流网支路模型

支路流量方程一般由动量方程决定,在忽略支 路进出口高差,支路中没有泵、风机等的情况下,支 路流量方程为:

$$\mathbf{W}^{2} = \mathbf{K}^{2} \left(\mathbf{p} - \mathbf{p} \right) \tag{1}$$

式中: ^w-支路流量, ^{kg}/ ; K-支路的导纳; ^p、^p-支路的进出口压力, P^a

将式 (1 在 时刻用泰勒级数进行线性化处理: $m_{f}(p_{t+1} - p_{t+1}) = w_{t+1} + n_{f}$ (2) $m_{f} = \frac{K}{2\sqrt{|p_{t}| - p_{t}|}}$ $\eta = -\frac{K\sqrt{|p_{t}| - p_{t}|}}{2}$

式中: ^m, ⁿ一支路特性参数; ^p, ^p, ^p, ⁻ 时刻支路进 出口压力, ^P, ^p, ^q, ₊₁、 ^p, ₊₁ + + 1 时刻支路进出口压 力, ^P, ^w, ^w, ₊₁为 和 + 1 时刻支路流量值, ^{kg}/ ^s

1.2 流网节点模型

根据质量守恒方程,不考虑焓温的影响,节点 方程:

$$C_{i} \frac{dP_{i}}{dt} = \sum_{x=1}^{m} W_{x} - \sum_{y=1}^{n} W_{j}$$
(3)

式中: $C = V_i \frac{\partial}{\partial P_i}$ 是节点 流体可压缩系数, V_i 为节 点 的控制体体积; W_i 一流入节点 的支路流量; W_i)一从节点 流出的支路流量; 节点 有 ^m个支路

作者简介: 费景洲 (1976—), 男, 黑龙江讷河人, 哈尔滨工程大学讲师, 博士研究生. 1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

(kg/s)

流入,卟个支路流出。

° 324 °

1.3 节点压力方程

将式(2)代入式(3)消去式(3)中的 骤和 骤则节点 的压力方程为:

$$-\left(\sum_{x=1}^{m} m_{j_{x}x} + \sum_{y=1}^{m} m_{j_{y}y} + \frac{C}{\tau}\right) p_{j_{y}+1} + \sum_{x=1}^{m} m_{j_{x}x} p_{y_{y}+1} + \sum_{y=1}^{n} m_{j_{y}y} + \sum_{y=1}^{m} m_{j_{y}y} + \sum_{y=$$

(4)

式中: ^{my} × ^{my} ~流入节点 的各个支路特性参数; ^{ny} × ^{my} ~流出节点 的各个支路特性参数; ^{Py} × ^{Py} +1 ~节点 当 和 牛1时刻压力值, ^{Pg} Py +1 ^{Py} +1 ~节点 的流入节点和流出节点下~时刻压力 值, ^{Pa}

节点 的压力方程是一个线性代数方程,若整 个流网中有 N个节点,就有 N个节点压力方程,联 立后利用稀疏矩阵迭代求解就可计算整个流网中所 有节点压力。

1.4 模型验证

将流网模型(以下简称"本文法")与文献[6] 提出流网模型(以下称"网络法")进行比较,该文献 提出的仿真实验原理图如图 1所示。

图 1 仿真实验流网系统

两种方法得到的计算数据如表 1所示。从表中 可知,在正常情况下两种方法结果基本一致,两个支 路在汇流节点前后流量平衡。按照该文献中的比较 方法,当 F1支路导纳增大 20倍时,网络法中汇流节 点 F5流入流量为 788 8 ^{kg/,s}流出流量为 789. 1 ^{kg/,s}流量计算偏差较大。本计算方法中节点 B流 入流出流量均为 840 14 ^{kg/,s}可以看出本文的流网 模型具有较高的计算精度。

从图 1和表 1可以看出,支路 F1和 AA流量之 和等于支路 P7的流量,即流网系统的总流入量等于 总流出量;系统中各个节点 P1 ~ P5的进出流量是 相等的,说明本研究采用的流网算法计算结果是正 确的

	18	፤ ሥባተገጋ/ኋ	비 并 기 木	(10)
支路	一般情况		F1支路导纳增大 20倍	
	网络法	本文法	网络法	本文法
Fi	378 0	379 31	434. 2	472.24
F2	378 0	379 31	434. 2	472.24
F3	378 0	379 31	434. 2	472.24
F4	378 0	379 31	354.6	367.90
ß	378 0	379 31	354.6	367.90
F6	378 0	379 31	354.6	367.90
F7	756 0	758 62	789.1	840. 14

而动 古 注 计 笪 纣 甲

2 增压锅炉风烟系统模型

增压锅炉风烟系统示意图如图 2所示,空气在 压气机内压缩,由锅炉配风器导入炉膛燃烧形成烟 气,烟气冲刷蒸发管束,过热器管束和经济器管束, 净化后进入烟气涡轮做功,经过烟囱排入大气。

系统内工质流量和压力具有较强的耦合关系, 由于压力具有双向传递性,不能通过自身模块内部 方程求出,需要通过流网模型求解。将图 2中各个 设备的进出口设为节点,节点间设备视为支路,两端 点为边界点,建立流网模型。

图 2 增压锅炉风烟系统示意图

2.1 系统阻力模型

系统阻力模型包括压气机进气道阻力模型、配 风器阻力模型、锅炉冲刷管束阻力模型和排气阻力 模型几个部分。

21.1 压气机进气道阻力模型

压气机进气道阻力损失:

$$\Delta P_{l} = \xi_{l} \frac{\rho_{l} \dot{\gamma}}{2} \tag{5}$$

式中: ΔP_1 —压气机进气道进出口压力差, P_3 , ξ_1 —进 气道阻力损失系数; ρ_1 —进气道特征截面上的气流 密度, k^{g/m^2} ; Y—进气道特征截面上的气流速度, m/s

与成质量流量形式:
$$W_1^2 = K_1^2 (p_{11} - p_{12})$$
 (6)

式中: Ψ 一进气道空气质量流量, $kg/s K = A \sqrt{\frac{2\rho_1}{\xi_1}}$ 为支路导纳, A 为进气道特征截面面积, m_1^2 , P_1 、 P_2 一压气机进气道进出口压力, P_a 这里取 $P_1 = P_a$, P_a 为大气环境压力。

线性化后写成式 (2)的形式:
m_f (
$$p_{1, \#_1} - p_{2, \#_1}$$
) = W_f + p_{f} (7)
m_f = $\frac{K}{2 \sqrt{|p_{1, \pi} - p_{2, \pi}|}}$
n_f = $-\frac{K \sqrt{|p_{1, \pi} - p_{2, \pi}|}}{2}$

式中: P₁、 P₂ — 时刻压气机进出口压力值, P₃ P₁, +1、 P₂ +1 — +1 时刻压气机进出口压力值, Pa 2.1.2 配风器阻力模型

舰用增压锅炉一般采用单通道配风器,其阻力属于局部阻力。计算方法是在常规锅炉局部阻力计算式基础上进行修正,文献[7]给出全负荷工况下单通道配风器流动阻力式:

$$\Delta P_2 = \frac{1}{2\rho_2} \xi_2 W_2^2 \tag{8}$$

式中: ΔP_2 —配风器进出口空气压力差, $P_3^{\circ} \rho_2$ —空 气、烟气平均温度下密度, $k^{g/m_3^{\circ}}$, ξ_2 —局部阻力系 数,主要与配风器几何特性有关; $W_2 = \rho_2^{\circ}$, $k^{g/(m^2)}$ 。 \mathfrak{H} 为空气、烟气质量流速, \mathfrak{H} 为空气、烟气流速, m/s

令 $W_2 = A_2 W_2$, 写成质量流量形式: $W_2^2 = K_2^2 (P_2 - P_2)$ (9)

式中: \mathbb{Y} 一配风器空气质量流量, kg/s K = A $\sqrt{\frac{2\rho_2}{\xi_2}}$ 为支路导纳, A 为配风器特征截面面积, \mathbf{n}^2 ; P_1 、 P_2 一配风器进出口压力, P_2

将式 (9)线性化后写成式 (2)的形式,处理方法 同前,这里不再赘述。

21.3 冲刷管束阻力模型

冲刷管束阻力模型主要包括蒸发管束,过热器 管束和经济器管束,通常按照摩擦阻力考虑,其计算 式为:

$$\Delta P_3 = \frac{1}{2\gamma_2} \xi_3 C_x W_3^2 \tag{10}$$

式中: ΔP_3 —冲刷管束进出口压差, $P_3^{a} \xi_3$ —摩擦阻力 系数: C_{a} —冲刷方式系数, 其取值根据烟气横向冲刷 21994-2016 China Academic Journal Flectronic Publish

错列管束、烟气横向冲刷顺列管束和纵向冲刷管束 3种情况确定^[8]。

写成质量流量形式:

$$\vec{R}_{3} = \vec{K}_{3} (\vec{p}_{1} - \vec{p}_{32})$$
 (11)

式中: W_3 一冲刷管束空气质量流量, kg/s K_3 一支路 导纳; P_3 、 P_2 一冲刷管束进出口压力, P_3

按照前面的处理方式,写成式(2)形式。

21.4 排气阻力模型

排气阻力部分主要包括涡轮增压机组烟气出口 至烟囱段,其阻力损失方程为:

$$\Delta P_4 = \xi_4 \frac{\rho_4 \frac{q}{4}}{2} \tag{12}$$

式中: ΔP_4 一烟气排气通道进出口压力差, $P_3 \xi_4$ 一排 气通道阻力损失系数; P_4 一排气通道特征截面上的 气流密度, k^{g/n^3} , Y一进气道特征截面上的气流速 度, m/s

流网模型的处理方式同压气机进气道模型,这 里要说明的是排气通道的进口压力 P_{41} 是做为边界 点来处理的, $P_{41} = P_a + \Delta P_a$

2.2 压气机流网模型

根据相似理论,将压气机工作特性表示为压比 π_°和折合转速^ηθ的函数:

$$G_{p} = (\pi_{p}, \eta_{p}) \tag{13}$$

式中: G_{vp} —压气机折合流量, k^{g} , $p_{n_{p}} = n / n_{o}$, n为 压气机工作转速, $r/m p_{n_{o}}$ 为设计转速, $r/m p_{n}$

对于确定的¹⁰,即对应于压气机特性图上的等转速线,有:

$$G_{p} = \mathfrak{f}_{\pi c} = \mathfrak{f}_{\frac{p_{2}}{p_{q}}}$$
 (14)

式中: ^p_q、^p₂一压气机进出口压力, ^P_a

压气机折合流量 G_i和压气机质量流量 G_i之间 关系可表示为:

$$G_{e} = G_{p} p_{q}^{*} \left(g \sqrt{T_{q}} \right)$$
(15)

式中: ^I₄一压气机进口滞止压力, P₄ T₄一压气机进口滞止温度, K₁ ^Q一重力加速度。

由式 (14)和式 (15)可建立压气机压力流量间 关系式:

$$G_{e} = \left(\frac{p_{q}}{p_{q}}\right) P_{q}^{*} \left(g \sqrt{T_{q}^{*}}\right)$$
(16)

写成式 (2) 形式的线性方程:

$$m_{c_{f}} p_{q_{t+1}} = w_{c_{t+1}}$$
(17)

式中: $m_{\text{rf}} = \frac{G_{\text{rp}}}{g \int T_{q}^{\tau} (1 - \pi_{\text{rf}})} -$ 支路特性参数, π_{rf} ing House. All rights reserved. http://www.cnki.net

为当前时刻压比; $P_{4 + 1} - + 1$ 时刻压气机进口压力, $P_{4} = W_{e+1} - + 1$ 时刻压气机流量, kg/s

压气机的流网模型关键在于对压气机特性图的 处理,上面的建模方法是建立特性图中等转速线上 压力流量间函数关系,线性化后求解。由于特性图 中有多条等转速线,当压气机转速大幅变化时压气 机流量会出现跳变,为此对压气机流网模型做如下 处理:

将压气机模型等效成一个阻力管道和激盘^[9], 阻力管道按照流网模型计算压气机流量:

$$\mathbf{G}_{\mathrm{c}} = \mathbf{K}_{\mathrm{c}} \left(\mathbf{p}_{\mathrm{q}} - \mathbf{p}_{\mathrm{2}} \right) \tag{18}$$

式中压气机出口压力 ¹²由激盘模型计算给出。激 盘模型根据压气机流量 Ge和压气机转速 ¹¹,通过 压气机特性图计算压比和效率,则:

 $\pi_{c} = \{ G_{cp} \mid \eta_{cp} \}$ (19)

$$\eta_{c} = I(G_{cp} \ I_{cp}) \tag{20}$$

压气机流量 Ga和压气机折合流量 Ga间关系按式 (15)确定。

2 3 烟气涡轮机流网模型

烟气涡轮动力特性曲线采用单曲线形式,其气 体动力特性关系曲线函数关系式为:

$$G_{IP} = (\pi_T) = (\frac{P_{T_1}}{P_{T_2}})$$
 (21)

式中: G_{P} 一涡轮的折合流量, $kg/ ; \pi_{T}$ 一涡轮膨胀 比; P_{I}^{*}, P_{D}^{*} 一烟气涡轮进出口压力, Pa

折合流量 Gp可表示为:

$$G_{IP} = \frac{G_{\Gamma} \sqrt{T_{II}}}{P_{II}^* G_{\delta}}$$
(22)

式中: G-烟气涡轮流量, ^{kg}/ § T_n-烟气涡轮进口 滞止温度, K, G-烟气涡轮设计流量, ^{kg}/ §

由式 (21)和式 (22)有:

$$G_{\rm T} = f \frac{P_{\rm T_{\rm I}}^*}{P_{\rm D}^*} \frac{P_{\rm T_{\rm I}}^* G_{\rm f}}{\sqrt{T_{\rm T_{\rm I}}}}$$
(23)

写成线性化形式:

$$m_{f f} p_{l_{1} + l_{1}} = w_{f + l_{1}}$$
 (24)

式中: $m_{\Gamma_{f}} = \frac{G_{\Gamma_{P}}G}{\sqrt{T_{\Gamma_{l}}} (1 - \frac{1}{\pi_{T}})}, \pi_{T}$ 时刻涡轮膨胀

比; P_{1, +1}— +1**时刻涡轮进口压力**, P^a, w₁₊₁— ++ 1**时刻涡轮流量**, ^{kg}/ ^s。

,按照上述建模方法建立增压锅炉风烟系统流网

3 风烟系统仿真模型验证

模型,解算风烟系统的压力 流量关系。以文献 [8] 介绍的增压锅炉为例,给出全负荷工况下烟风系统 各个部分压力的仿真结果。表 2中给出该文献提供 的实验值和本研究的仿真计算结果,可以看出本研 究计算值与实验值吻合良好。

表 2 增压锅炉全负荷时运行参数

(MPa)

	实验值	计算值
压气机出口空气压力	0 291	0. 292
炉膛烟气平均压力	0 285	0. 286
蒸发管束平均压力	0 284	0. 285
过热器管束烟气平均压力	0 282	0. 281
经济器管束平均压力	0 277	0. 274
烟气涡轮进口烟气平均压力	0 271	0. 269

此外,所采用的增压锅炉风烟系统流网模型已 应用于某大型蒸汽动力装置仿真项目,用该模型计 算得到的数据与系统热平衡计算数据相比,关键参 数的稳态精度均在 ±2%以内,表明该模型具有较好 的计算精度。

4 烟风阻力变化对机组性能影响

增压锅炉在实际运行过程中烟风通道由于结灰 等原因会导致系统的烟风阻力增大:机组受安装条 件的限制,其进排气管道阻力可能与设计值相差甚 远。为研究烟风阻力变化对机组匹配特性的影响。 研究给出压气机进气系统阻力增加 40%、锅炉烟风 阻力增加 10%和涡轮排气系统阻力增加 40%时机 组主要参数的仿真对比结果,如图 3~图 6所示。 从图中可见,压气机进气系统阻力增加使压气机工 作点向折合流量增大方向移动,锅炉烟风阻力和涡 轮排气阻力增加使压气机压比增大,压气机消耗功 率增大,而烟气涡轮膨胀比减小导致其做功能力降 低。压气机耗功增加和烟气涡轮做功能力下降使得 辅助汽轮机随着锅炉负荷升高需补充的功率急剧升 高,辅助汽轮机耗汽量增大,其耗汽量占主锅炉产汽 量比重增加。如果增压锅炉风烟系统阻力特性严重 偏离设计参数, 主锅炉将无法达到最大负荷。

上述分析说明建立的仿真模型可较准确地分析

力变化等对涡轮增压机组与增压锅炉匹配特性的 影响。

图 3 压气机压比变化

图 4 压气机喘振裕度变化

图 6 辅助汽轮机功率变化

5 结 论

研究了一种全节点的流体网络模型,通过算例 证明了该模型具有较高的计算精度。

在流网模型的基础上建立了增压锅炉风烟系统 模型,进一步分析了风烟系统阻力变化对机组匹配 性能的影响。仿真结果表明本研究所建模型具有较 高的计算精度,能够较准确地反映增压锅炉风烟系 统的动态特性。

致谢:感谢中央高校基本科研业务费专项资金资助。

参考文献:

- [1] 沈志刚, 邹积国, 姜任秋, 等. 增压锅炉机组重要热工参数的选择[]. 热能动力工程, 2003 18(1): 27-29.
- [2] 韩 静. 船用增压锅炉的热平衡计算方法研究[]. 工程热物 理学报, 2004, 25, 173-175.
- [3] 李彦军. 船用增压锅炉的增压机组和热平衡计算[]. 哈尔滨 工程大学学报, 2007 28(8): 867-869.
- [4] 蔡 洁. 船用增压锅炉涡轮增压机组动态仿真研究 [1]. 哈尔 滨:哈尔滨工程大学, 2007.
- [5] 吕崇德. 大型火电机组系统仿真与建模[^M]. 北京:清华大学 出版社, 2002.
- [6] 蔡 楷,陈启卷,王建梅,等.超临界锅炉风烟系统的流体网络 动态数学模型[].动力工程,2009,29(2):134-138
- [7] 李 章,张 宁,刘祥源,等.舰用增压锅炉装置[^{M]}.北京:海 潮出版社,2000
- [8] 姜任秋,赵 鑫,李彦军,等.舰用增压锅炉烟风阻力计算方法
 研究[].哈尔滨工程大学学报,2004.25(5):566-568
- [9] GRE ITZWR E M Surge and notating stall in axial flow compress sors part I theoretical compression system model J. ASME Jour nal of Engineering for Power 1976 98, 190-198

(编辑 陈 滨)

and reheaters. The tube nupture due to an overtemperature of a superheater and reheater directly affects the safe operation and cost effectiveness of their unit. Hence, calculation of wall surface temperature and life loss rate of a boiler superheater and reheater in a power plant is very important. The authors have performed a study of the calculation of the life loss rate of the superheater and reheater of a Soviet Union made TII82 type boiler. According to the model for calculating the life loss rate of superheaters and reheaters of boilers presented by the authors with No 1 boiler of a power plant serving as an example the life loss rate of the boiler superheater and reheaterwas calculated as $\phi = 0.22141$. Therefore, the foregoing can provide a basis for developing an on-line monitoring and fault diagnosis system in the future which can accurately predict wall surface temperature and service life of a boiler superheater and reheater is boiler superheater in the future which can accurately predict wall surface temperature and service life of a boiler superheater and reheater Key words boiler superheater reheater lifetime loss rate

热水锅炉补水系统氮气稳压及效果 = N itrogen_based Pressure Stabilization and Its Effectiveness of the M akeup W ater System of a Hot W ater Boiler [刊,汉] WANG Deming IONG Teng rui (College of Urban Construction and Environment Engineering Chongqing University Chongqing China Post Code 400045), DNG De Yu IUO Cheng (Department of Power Engineering Chongqing College of Electric Power Chongqing China Post Code 400053)// Journal of Engineering for Thermal Energy & Power – 2011, 26(3). – 319 ~322

By utilizing the thermodynamic theory analyzed was the principle for nitrogen based pressure stabilization. A nitro gen_based pressure stabilization device was additionally installed in the makeup water system of a hot water boiler. The thermodynamic state and process of nitrogen experienced during the pressure stabilization were described and the relationship of the makeup water periods of the hot water boiler system with and without a nitrogen_based press sure stabilization device obtained. As a result, the authors came to a conclusion that the heating network system with a nitrogen_based pressure stabilization device enjoys a relatively longmakeup water period and can enhance the stability and safety of the system during its operation. As the period of the makeup water pump is prolonged its st artup and shutdown frequency decreases and its service life is extended its power consumption will be reduced ac cordingly therefore the labor intensity of the operators can be lightened. Key words heating network system thermodynamic analysis pressure stabilization safety water pump boiler

船用增压锅炉风烟系统的流体网络模型 = Fluid Network Model for the Air and Flue Gas System of a Marine Turbocharged Boiler[刊,汉] FEI Jing zhou MA Xiu zhen (College of Power and Energy Engineering Har bin Engineering University Harbin China Post Code 150001)// Journal of Engineering for Thermal Energy & Power - 2011, 26(3). -323~327

The air and flue gas system of a turbocharged boiler and its turbocharged unit enjoy a very strong the mal coupling relationship the resistance characteristics of which have an inportant influence on the irm atching performance For ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

this purpose a method formodeling an air and flue gas system of a urbocharged boiler based on a fluid network was presented. The fluid network models for various parts of the air and flue gas system of the turbocharged boiler were also established. The fluid network was used to obtain and calculate the coupling relationship between the flow rate and pressure of the system in question. A comparison of the sinulation results and test data shows that the model under discussion enjoys a relatively high precision. On this basis, the influence of a change in air and flue gas flow resistance on the performance of the turbocharged unit was further analyzed. It has been found that to in crease the flue gas flow resistance of the boiler will decrease accordingly. The power supplemented by the auxiliary steam turbine will increase and the steam supply capacity of the boiler will decrease correspondingly. The foregoing can offer reference formatching design of a turbocharged unit for a turbocharged boiler. K ey words, turbocharged boiler air and flue gas system fluid network, simulation and modeling resistance characteristics

600 MW燃煤锅炉二次汽欠温改造及实施效果 = M od ification of a 600 MW Coal fired Boiler Due to an Excessive V Low Temperature of the Secondary Steam and Its Im Plementation Effectiveness [刊,汉] YAN Linbo, HE Boshu (College of Electromechanical Engineering Beijing Jiaotong University Beijing China Post Code 100044), MENG Jian guo CAO Jian chen (Hebei Datang International Wangtan Power Generation Co Ltd Tangshan, China, PostCode 063611)// Journal of Engineering for Thermal Energy& Power - 2011, 26 (3). -328~332

Since its operation No 1 boiler of a power plant exists all along a problem of its secondary steam not reaching the design temperature at non full bads j e an excessively low temperature of the secondary steam bringing about an adverse effect on the safety and cost effectiveness of the boiler operation. A modification and rectification is urgently needed. As viewed from the long, term operation data and thermal balance analysis the original heating surface of the boiler was not arranged most rationally and needed to be reconstructed. For this purpose, on the basis of a de tailed check of the thermal calculation panel by 1 2 and 3 meters respectively. Through a comprehensive contrast and analysis of the thermal calculation results thermolification of cutting short the high temperature platen of the boiler by 2 meters was chosen. After the reconstruction, the boiler realized a stable operation and the problem of the excessively by temperature of the secondary steam was solved with a satisfactory modification result being a chieved. Key words pulverized coal fired boiler excessively pw temperature of secondary steam, partition panel modification thermal calculation.

旋流对高温空气燃烧影响的模拟研究 = Num er ical S im ulation of the Influence of a Swirling F low on High Temperature A ir Com bustion [刊,汉] SU Ya xin WANG Wen hui DENG Wen Yi(College of Environment Science and Engineering Donghua University Shanghai China 201620). // Journal of Engineering for Themal ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net