文章编号: 1001-2060(2010)04-0385-04

高温升蒸发型燃烧室的设计

明,吴二平,唐 黎 明

(西北工业大学 动力与能源学院,陕西 西安 710072)

摘 要:为了满足某地面实验设备对燃烧室高温升的要求, 设计了温升为1350K的蒸发型燃烧室。根据燃烧室总体 结构,设计了燃烧室的主要部件。通过对燃烧室的气动热力 计算,确定出了燃烧室总体和火焰筒开孔的尺寸,并对燃烧 室进行了一定的性能实验。实验及应用结果表明,所设计的 燃烧室具有工作安全可靠、结构简单、空间利用率高、升温速 度快及排气清洁的特点。在整个工作范围内,燃烧效率达到 0.95~0.97 出口温度场不均匀度低于 0.09 符合设计要求。

关键 词:燃气轮机;高温升;蒸发型;燃烧室

中图分类号: TK16 TK473.2 文献标识码: A

引 言

半个多世纪以来,随着燃气轮机的发展,燃烧室 技术也相应得到了很大的提高,例如其结构由最初 的单管发展到环管,进而到环形及短环形。目前,航 空燃气轮机为了大幅度提高推重比及功重比,其燃 烧室是朝着高温升方向发展,而低污染排放则是民 用燃气轮机燃烧室今后主要的发展方向,这两方面 的发展趋势给燃烧室的研究和发展带来了很大的技 术挑战^[1~3]。因此,一些工业发达的国家,针对发展 高性能燃烧室的关键技术,都制订了各自的研发计 划,例如美国正在实施的多用途经济可承受的先进 燃气涡轮发动机计划 (VAATE)和超级高效发动机 计划(UEET)等。

燃烧室不仅是燃气轮机的核心部件之一,而且 也是某些地面实验设备的关键部件。例如以燃烧室 作为加热器的高温热风洞,由于其工质性质与燃气 轮机的相近,因而可以利用其开展涡轮部件的性能 试验,测温传感器的校准与标定,高温复合材料的应 用环境性能模拟等多种与燃气轮机相关的科研实践 活动。本研究根据某热风洞的气源条件及对燃烧室 的性能要求,设计了一种以航空煤油为燃料的高温 升蒸发型燃烧室,其最大温升为1350 K 燃烧室的 主要设计参数如表 1所示。

表 1 燃烧室的主要设计参数

	数值
空气流量/kg。 s-1	0.30
进口压力 /MPa	0. 13
进口总温/K	523
出口总温/K	1873
燃烧效率	0. 96
温度系数	≪0.10
总压恢复系数	0. 93

燃烧室结构设计 1

对于使用液态燃料的燃烧室,按供油方式通常 可主要分为压力雾化型、空气雾化型和蒸发管型。 由于蒸发管型具有结构简单、火焰筒长度短、供油压 力低、燃烧效率高、排气清洁以及出口温度场容易控 制等诸多优点^[4~3],因此在设计中采用了蒸发管环 形燃烧室的结构方案。所设计的燃烧室主要由进口 扩张段、壳体、火焰筒、中心蒸发管、燃油预热器、喷 嘴、陶瓷收敛段和点火器等部件组成,轴向长度 595 mm, 壳体直径 272 mm, 进口直径 150 mm, 出口直径 80 mm,其总体结构如图 1所示。

图 1 燃烧室总体结构

收稿日期: 2009-11-27, 修订日期: 2010-01-08

作者简介:黎 明(1965-),男(土家族)贵州德江人,西北工业大学副教授.

^{?1994-2018} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

1.1 进口扩张段和壳体

° 386°

进口扩张段采用直线壁面造型规律,保证气流 在扩张通道中尽可能地稳定减速流动,不产生分离。 除扩压减速外,进口扩张段还为火焰筒、喷嘴及点火 器的安装和固定提供支撑和定位。燃烧室壳体为整 体筒状结构,在壳体后段的下方和上方分别设有进 油嘴和出油嘴,在壳体前段的下方设有漏油塞,用来 排放燃烧室内的积油。

1.2 火焰筒和中心蒸发管

火焰筒由分流锥及火焰筒筒体组成。位于火焰 筒前端的分流锥将进入燃烧室的空气分成一次空气 和二次空气,一次空气进入中心蒸发管内,二次空气 则进入二股腔道内。火焰筒前段依靠进口扩张段上 的 3个定位销进行固定,其后段则插入陶瓷收敛段 内,从而实现火焰筒的轴向、径向和周向定位,同时允 许火焰筒工作时产生一定的热膨胀。中心蒸发管由 内筒、外筒、反向导流环及后端盖组焊而成,如图 2所 示。蒸发管内筒引入了少量空气,作为二次空气从蒸 发管后端进入燃烧区,实践表明这种设计可有效加强 富油时火焰筒中心处的燃烧强度,提高富油燃烧效 率,缩短火焰,使燃烧室出口温度场更均匀。

图 2 蒸发管结构示意图

1.3 燃油预热器和喷嘴

在高温升燃烧室中,利用燃气热量预热燃油是 改善燃烧过程的有效手段,因此在燃烧室中设置了 燃油预热器,预热后的油温可达 80~100 ℃。燃油 预热器为体内螺旋式结构,铜制预热管安置在壳体 后段与隔热屏之间的环腔内,隔热屏的作用是对预 热管给予保护。预热后的燃油从壳体上方的出油嘴 输出,通过油管引入进口扩张段上的进油嘴。燃油 喷嘴采用 6个内径为 0.6 mm的直射式喷嘴,喷嘴 座嵌入在蒸发管的内筒中,保证 6个喷嘴中心对称 地分布在蒸发管内外筒之间的环腔内。

1.4 陶瓷收敛段和点火器

探测结果显示,其出口内壁温度可达 1 200~1 400 ℃,这是高温陶瓷材料所能允许的。在装配结构上, 陶瓷收敛段采用了套齿浮动安装方式,其在燃烧室 中只受到径向和轴向限位,但均留有热膨胀间隙。 燃烧室采用一套 WP-5发动机的预燃式点火器,具 有点火可靠、点火能量大的特点,为了简化结构,将 火焰筒的一个定位销与点火器的传焰管设计为一 体。

1.5 燃烧室的安全及冷却

由于燃烧室的温升高,因此其金属部件的冷却 是设计中必须考虑的问题。蒸发管工作时处于高温 燃气中,其依靠内部燃油的附着、吸热与蒸发可得到 充分冷却,示温漆显示蒸发管壁面温度不超过 900 °C,由于蒸发管是采用长期工作温度为 950~1 050 °C的耐热钢锻件制造,因而不会带来安全问题。火 焰筒筒体虽然是采用耐热钢板材经冲压焊接而成, 而且其外部也有二次空气流过,但由于其内壁燃气 温度很高,因此在火焰筒上共设置了四道冷却气膜, 均为波纹环式结构。

2 燃烧室的气动热力计算

在燃烧室的结构确定后,应当进行燃烧室的气 动热力计算。计算的主要目的是确定燃烧室的空气 流量分配、火焰筒内的沿程气动热力参数、余气系 数、容热强度和流阻损失等是否合理,以此作为调整 燃烧室主要尺寸和火焰筒开孔尺寸的依据。根据火 焰筒的进气情况,选取 9个计算截面,从 11~99 截面依次为蒸发管反向导流环出口、头部气膜孔、头 部孔、主燃孔、第二道气膜孔、蒸发管内筒出气孔、掺 混孔、第三道气膜孔及尾部气膜孔,计算模型如图 3 所示。

图 3 计算模型

21 **陶瓷收敛段是燃烧室内温度最高的部件, 红外** 21994-2018 China Academic Fournar Electronic Publishing House. All rights reserved. http://www.cnki.net 利用一套适用于工程设计的自编程序,采用流 阻法和一元流法对燃烧室进行气动热力计算。首先 用流阻法初步确定流过火焰筒各排孔的流量,以其 结果作为一元流法计算的初值,然后利用一元流法 依次计算各截面的相关参数,并对最后计算出的叠 加流量进行校核。如果所计算的各排孔流量的总和 与燃烧室进口流量之差达不到精度要求,则应对火 焰筒头部各排孔的流量进行调整,根据重新分配后 的流量关系,重复上述计算直到满足精度要求为止, 计算结果如表 2所示。从表可见,各截面的余气系 数、各排射流孔的流量百分数及火焰筒内各截面的 温度分布和压力损失等均处于合理范围内。

表 2 空气流量分配及流程参数的计算结果

截面序号	余气系数	各排孔流量 / k ^{g。 s-1}	各排孔叠加流量 / k ^{g。} s ⁻¹	¹ 各截面流速 /m∘ s-1	各截面总温 /K	各截面总压 /MPa
1	0 35	0. 060	0 060	6.54	1 519 56	0 128
2	0 41	0. 009	0 069	7.34	1 519 56	0 128
3	0 62	0. 033	0 102	10. 45	1 519 56	0 127
4	1 12	0. 090	0 192	29. 20	2 385 13	0 127
5	1 18	0. 010	0 202	29.82	2 323 39	0 126
6	1 26	0. 013	0 215	30. 57	2 249 47	0 126
7	1 57	0. 062	0 277	33. 79	1 957 50	0 125
8	1 62	0. 011	0 288	34. 29	1 915 72	0 125
9	1 66	0. 012	0 300	34. 82	1 873 13	0 125

3 燃烧室性能实验

3.1 实验装置与测量方法

根据热风洞对燃烧室的性能要求,以一台罗茨 风机作为气源,在燃烧室进口压力为 0 12 MPa空 气流量为 0 33 k^g/ [§]进口温度为 523 K出口温度为 1 473~1 923 K的条件下,对燃烧室进行了燃烧效 率特性和出口温度场均匀度实验。实验中空气流量 采用流孔板测量,燃烧室进口温度采用镍铬一镍硅 热电偶测量,出口温度采用双铂铑热电偶测量,进口 压力采用总压探针测量,燃油流量采用齿轮流量计 测量。实验中采取四点周向均布并按等环面规律测 量燃烧室的出口温度场,每支温度耙设 3个测点,实 验状态如图 4所示。

图 4 燃烧室的实验状态

根据能量平衡原理,燃烧室的燃烧效率 η。可 通过焓升法来确定¹⁹,即

衡量燃烧室出口温度场均匀度的温度系数 & 可计算为:

$$\delta_{n} = \frac{T_{3m \ ax}^{*} - T_{3m}^{*}}{T_{m}^{*} - T_{2}^{*}}$$
(2)

式中: ፲⁵max</sub>—燃烧室出口截面的最大温度; ፲⁵m—燃 烧室出口截面的平均温度; ፲⁵ —燃烧室的进口温 度。

3.2 实验结果和分析

实验结果分别如图 5和图 6所示。蒸发型燃烧 室属于油气预混的供油方式,由于燃烧室工作时蒸 发管处于火焰区,通过金属管壁会吸收大量的热,因 此从蒸发管喷出的基本上是气态的富油混合气。当 这部分富油混气与进入火焰筒头部的二次空气混合 后,形成接近于燃烧恰当比的最适合于燃烧的均匀 混气,加之设计中采取了燃油预热的措施,增强了蒸 发管的预热预混效果,因而燃烧室的燃烧效率高,排

?1994-2018 China Academic Journal Electronic Publishing House: All rights reserved: 他 http://www.cnki.net

图 5 燃烧效率特性

图 6 温度场均匀度

由图 5可以看出,在实验状态范围内,燃烧效率 变化不大且都在 0 95~0.97之间,这完全符合蒸发 管环形燃烧室的工作特点,即在一定的余气系数范 围内,燃烧效率较高,且随余气系数的变化不敏感。 由于蒸发型燃烧室形成的混气较为均匀,其燃油分 布在很大程度上由气流控制,不受燃油流量限制,因 此其出口温度分布均匀。图 6反映出燃烧室良好的 出口温度场均匀度,温度系数低于 9%,说明燃烧室 内气流组织合理、燃烧均匀、火焰较短。

4 结 论

(1)对于高温升燃烧室的设计,采用燃油具有 自身预热、蒸发并与空气预混效果的蒸发型结构方 案是一种适宜的选择;

(2)燃烧室的流量分配及火焰筒的开孔规律是 合理的;

(3)一定的性能实验结果说明,燃烧室的性能 参数能够满足热风洞的工作要求;

(4) 从实验后的分解情况看, 火焰筒和蒸发管 完好, 无过热和烧蚀现象, 说明燃烧室的安全措施和 冷却结构是可靠的;

(5) 实验过程表明,所设计的燃烧室不适合在 出口温度低于 1 173 K的状态下工作,因为过于低 温状态下工作,由于供油量较小,蒸发管出口的余气 系数增大很多,蒸发管内易产生回火现象,导致燃烧 过程出现脉动,严重时会危及蒸发管的安全。

蒸发型燃烧室由于结构简单、紧凑,空间利用合 理,可有效扩大燃油的预热面积,改善火焰筒内的燃 烧过程,因而性能参数较高,具有较好的适用范围和 工程实用价值。本设计技术和方法可为今后此类高 温升燃烧室的研制提供借鉴和参考。

参考文献:

- [1] 侯晓春. 高性能航空燃气轮机燃烧技术 [^M]. 北京: 国防工业 出版社, 2002.
- [2] 林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室 [^M]. 北京: 国防工 业出版社, 2008
- [3] 黄 勇. 燃烧与燃烧室 [^{M]}. 北京: 北京航空航天大学出版社, 2009.
- [4] 甘晓华. 航空燃气轮机燃油喷嘴技术 [^{M]}. 北京: 国防工业出 版社, 2006.
- [5] 樊未军, 孔昭健, 李继保, 等. 新型蒸发燃油喷射装置的雾化和
 蒸发性能[].推进技术, 2007, 28(3): 243-247.
- [6] 彭泽琰,刘 刚,桂幸民,等.航空燃气轮机原理[^{M]}.北京:国 防工业出版社,2008

(编辑 辉)

•书 讯•

《锅炉安全技术》

本书以工业锅炉为主体,介绍与锅炉 运行的安全性有关的基础知识。内容包 括:锅炉的燃料与燃烧产物,分类及结构特 点,主体设备、配套设备及安全附件,水动 力特性,水处理方法,运行控制与调整技 术,常见事故与处理要点,锅炉在制造、安 装及运行中的检验等。各部分内容均以 "安全"的角度出发,突出解决锅炉的"安 全"问题。通语通俗易懂,并附有大量图 表,便于读者理解。

读者对象:司炉工、锅炉初中级技术人 员及特种设备安全管理者。

2009年 11月出版

f. <u>
右辺恐和認識理現象, 说明際院至的女主信他和</u> 1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net tion that our country currently has not yetmade available necessary conditions for producing any light type gas turbines should not be chosen as far as possible. Each station shall be provided with at least three gas turbines and can be built in phases or stages with space being reserved for the extension project. This not only relates to the safe and smooth operation of the long distance transmission pipeline but also has an extremely big influence on its operation cost. On the basis of an analysis of theoretical and actual operation effectiveness, the authors have studied and explored in depth the foregoing two major technical problems. Key words, long distance transmission pipeline gas turbine, compressor unit machine type, configuration

变几何燃气轮机性能的计算分析 = Cakulation and Analysis of the Performance of a Variable Geometry Gas Turbin [刊, 汉] / QIU Chap SONG Hua fen (College of Mechanical and Power Engineering Shanghai Jiao tong University Shanghai China PostCode 200240) // Journal of Engineering for Thermal Energy & Power = 2010 25(4). -377~380

To analyze the performance of a unitwhen its turbine is being geometrically changed proposed was a new method for studying the performance of variable geometry gas turbines based on a small deviation equation. By using the method the unit performance was calculated when the relative change of different turbine flow path areas is within $\pm 5\%$ and a theoretical analysis has been performed. The analytic results show that in simple cycle units whether a HP urbine LP urbine or geometrically changed power turbine is used it will have little influence on the cost of fectiveness of the system but will affect the equilibrium operating lines of the compressor. Among others, the varia ble geometry of the LP turbine will have a relatively big influence on the equilibrium operating lines of the same operating lines of the HP compressor Key words small deviation equation variable geometry gas turbine performance study

燃气轮机控制室中央空调自控系统的设计与应用 = Design and Application of a Central A ir_conditioning Automatic Control System in a Gas Turbine Control Room [刊,汉] / WANG Qi xiang XE X ian_gang SONG Chun_hua et al (Sch ∞ l of Maritime A ffairs and Harbor Nav gation, Guangdong Traffic Vocational Technical College Guangzhou China Post Code 510800)// Journal of Engineering for Thermal Energy & Power – 2010 25(4). -381 ~384

Desgned was a configuration software based automatic control system for the central air conditioning in a gas tur bine control room. With PLC (programmable logic controllers) and configuration software serving as a core, the system employed distributed remote modules to accomplish data acquisition and transmission of control signals. The operation results show that depending on the correlation among the transducers, transmitters, PLC and actuators in the automatic control system, the authors have employed a manimachine friendly interface to set and reflect the control parameters of the system, facilitating the setting operation and management of relevant parameters, thus optimizing the distributed control system of central air conditioners Key words gas turbine control room, PLC (programmable logic controllers), central air conditioning automatic control configuration software

高温升蒸发型燃烧室的设计 = Design of a High-tem perature rise Evaporation Type Com buston[刊,汉] / LI Ming WUErping TANG Ming (College of Power and Energy Source Northwest Polytechnic University Xian China Post Code 710072) // Journal of Engineering for The mal Energy & Power - 2010 25 (4). -385 ~ 388

To meet the requirement of a combustor in a ground surface test facility for a high temperature rise designed was an evaporation type combustor with a temperature rise of 1350 K. According to the overall structure of the combustor its main components were designed. Through the aerodynamic and the modynamic calculation of the combustor the ?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

overall dimensions of the combustor and the open ing hole dimensions of the flame tube were determined. On this basis a performance test of the combustor was conducted to a certain extent. The test and application results show that the combustor thus designed features a safe and reliable operation, a simple structure as well as a high space utilization rate a quick temperature rise speed and a clean exhaust gas. In the whole operation range, the combus tion efficiency can reach $0.95 \sim 0.97$ and the non-uniformity of the temperature rise evaporation type, combustor thus meeting the design requirements K ey words gas turbine high temperature rise evaporation type combustor.

余热电站热力系统建模及蒸汽参数优化 = M ode ling and Steam Parameter Optin jzation for the Thermodynamic System of a W aste Heat Power P [ant 刊, 汉] / ZHAO Bin, XU Hong, ZHANG Cai juan (Education Ministry Key Laboratory on Power Plant Equipment Condition Monitoring and Control North China University of Electric Power Beijing, China, Post Code, 102206), IUX jao wen (Hebei Provincial Key Laboratory on Modern Metallurgical Technologies, Hebei University of Science and Technology, Tangshan, China, Post Code 063009) // Journal of Engineering for Thermal Energy & Power - 2010, 25(4). -389 ~393

The choice of a the modynamic system and its steam parameters is the most important basic work for designing a waste heat power plant. With the dual pressure system in a sintering waste heat power plant in Jinan Iron and Steel Works serving as an example established was a model for calculating a hermodynamic system and optimizing its steam pressures with a maximum net power output serving as the target function. In addition, a program was de signed and the correctness of them odel was verified through calculations. The main factors influencing the optimization of the main steam pressure were analyzed and the law governing the change of net power output with the main steam pressure was studied. The research results show that the optimum main steam pressure of a case calculation is 2.2 MPa 0.14 MPa h Bher than the main steam design pressure of the power plant. The research findings can offer a relatively scientific basis for the optimized design and operation of low pressure waste heat power plants K ey words waste heat power plant, thermodynamic system, mathematical model program computation, main steam pressure optimization.

Ω型惯性气液分离器性能研究 = Perform ance Study of aΩ Type Inertia Gas_liquid Separator[刊,汉]/ IUAN Yigang SUN Haiou WANG Song etal(College of Power and Energy Source Engineering Harbin Engi neering University Harbin China Post Code 150001)// Journal of Engineering for Thermal Energy & Power - 2010 25(4). -394~398

With the help of a numerical simulation method predicted was the status of the flow field inside a Ω type gas liquid separator. In the calculation, the two dimensional Reynolds time averaged N— S equation was adopted, and the standard model has been used as the turbulent flow model to obtain and understand the distribution characteristics of the flow field inside the separator. Moreover, the performance of the separator with different clearances was studied and a model was fabricated to conduct a test in a wind tunnel. The theoretical calculation results were verified and the resistance and efficiency characteristics of the separator obtained. It has been found that the separator has a relatively high gas liquid separation efficiency and the blade spacing exercises a very big influence on the separator efficiency. When the Ω type blade spacing is 18.2 mm, the average separation efficiency can reach over 0%. Key words Ω type gas liquid separator numerical simulation model test drag force separation efficiency

造气炉渣与无烟煤混合燃料燃烧特性分析 = Analysis of Combustion Characteristics of a Gas Production Slag and AnthraciteM ixed Fue[刊,汉] / GAO Yu fen, WANG Peng LIHong jun (Engineering Project Instal lation Team Department of Combined Service Forces Shenyang Military Region Liaoyuan China Post Code ?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net