文章编号:1001-2060(2009)05-0618-05

底饲进料循环喷动床内压力 脉动信号的 SHANNON 信息熵分析

陶 敏1,金保升1,杨亚平1,薛玉兰2

(1.东南大学能源与环境学院, 江苏南京 210096; 2. 华东电网有限公司, 上海 200002)

摘 要: 为了研究底饲进料循环喷动床内气固两相流的流动 特性, 通过冷态实验测量反应塔内轴向不同高度上的压力脉 动信号。应用 SHANNON 信息熵分析压力信号,并比较不同操 作条件对塔内气固流动的影响。结果表明:压力脉动及其功 率谱在不同床层高度上表现出不同的特性; SHANNON 信息熵 能够很好地反映特征信号的复杂程度和稳定程度;提高流化 速度和循环倍率能够导致塔内轴向上的颗粒浓度上升,从而 使压力脉动的幅度增加;提高喷射速度和喷嘴位置,能使反应 塔底部气固湍动更加强烈, SHANNON 信息熵随之上升。

关 键 词: 底饲进料循环喷动床; 气固两相流; 压力脉动; SHANNON 信息熵

中图分类号: X701.3; 0273 文献标识码: A

引 言

为了进一步提高脱硫效率,底饲进料循环喷动 床(underfeed circulating spouted bed,UCSB)采用底饲 进料的方式,使新鲜脱硫剂通过底饲喷头从各方向 均匀进入塔内,在反应塔底部形成高湍动度、高颗粒 浓度的气固混合,克服了采用面饲进料方式时脱硫 剂颗粒在截面上特别是在底部喷水区域分布不均的 问题,是在常规的循环流化床烟气脱硫装置基础上 开发的新型干法脱硫技术。

研究不同操作条件对反应塔内气固流动特性的 影响对于优化设计和操作运行具有重要的意义。压 力特征信号包含了气固流动特征在时间和空间上的 许多动态信息,是颗粒特性、床的几何特性、气泡运 动特性等多种因素的综合反映。应用压力脉动信号 研究流化床和喷动床内的动力学行为已被许多研究 者采用^[1~9],通过有效的信息处理手段,如统计分 析、频谱分析和混沌分析等^{7~9]},对压力信号加以分 析,提取重要的特征参数,可以进一步认识气固流动 更为复杂的规律,并建立这些特征参数与气固流动 特性之间的联系。本研究通过采集不同位置处的压 力脉动信号,通过频谱变化分析了反应塔在轴向上 的气固流动特性;并应用 SHANNON 信息熵对压力 信号进行处理,进一步分析了不同操作条件(包括流 化气速、喷射速度、回料量、喷头位置)对反应塔气固 流动的影响,为底饲进料循环喷动床的控制运行和 优化操作提供依据。

1 实验装置和研究方法

1.1 实验装置

图1 底饲进料循环喷动床烟气脱硫系统图

底饲进料循环喷动床烟气脱硫模拟中试试验装 置的工艺流程如图1所示。整个试验装置由脱硫反

基金项目:国家自然科学基金资助项目(50706007)

作者简介: 1900 1983 ma 界c 宏徽池州人动东南木学博去研究中ublishing House. All rights reserved. http://www.cnki.net

收稿日期: 2008-09-01; 修订日期: 2009-01-14

应塔主体,雾化增湿系统,气固分离系统,底饲进料 系统,回料系统以及测量系统组成。脱硫塔主体直 径0.6 m,总高度19 m,有效高度为15 m。烟气从塔 底进入经文丘里管均匀布风后进入塔内,新鲜脱硫 剂通过底饲进料系统从底部喷水区域加入,在上升 过程中与烟气中的二氧化硫进行反应。净化后的烟 气由床顶离开,通过旋风和布袋除尘器实现气固分 离后进入烟囱排放,部分收集的固体颗粒可再次循 环使用。

底饲进料系统主要由螺旋加料器、料仓、立管、 喷射器和底饲喷嘴等组成。底饲进料系统及采用的 喷头结构如图 2 所示。喷头侧面均匀布置有一定数 目的等径圆形喷口,本实验采用的喷嘴形式为四口 喷嘴。喷头下端与气力输送管道之间采用焊接式直 通管接头进行分段连接,可方便拆卸更换喷头和调 整喷头高度。本试验中喷口中心距离文丘里扩张段 底部的默认高度为 0.3 m。

图2 底饲进料系统及喷头结构

沿提升管轴向布置有9个测压孔,测压孔距离 文丘里扩张段顶部的高度用 Z 表示,压力信号送入 量程为0~10 kPa 的多通道差压变送器,输出信号 进行 *A*/*D* 转换后,由计算机采集。其采样频率为 50 Hz,每个测点的采样时间为 30 s。底饲进料采用 平均直径为75 //m 的石英砂作为颗粒相,其密度为2 600 kg/m³,流化介质为空气。实验均为常温条件。 1.2 分析方法

SHANNON 信息熵是系统信息量大小的量度。 床内不同位置的时间序列信号,从不同的时间和空间反映了流型的特征。不同流型所包含的信息量是 有差别的。因此,对压力脉动时间序列进行 SHAN-NON 信息熵分析,可以建立不同操作条件下的气固 流动特性与 SHANNON 信息熵之间的联系^[19]。

对任一组时间序列 $\{x_1, x_2, \dots, x_n\}$ 的 SHANNON 信息熵(S, 单位为 Hart)的定义为:

$$S(x) = -\sum_{i=1}^{n} p(x_i) \lg p(x_i)$$

式中:n一时间序列信号的长度; $p(x_i)$ 一每个随机 信号发生的概率,满足 $\sum_{i=1}^{n} p(x_i) = 1$,采用联合概率密 度公式进行计算。

基于信息论的观点,系统熵越大,包含的信号越 少,系统不稳定;反之,熵越小,包含的信号越大,系 统就越稳定。反应塔内压力脉动信号的 SHANNON 信息熵,反映了塔内气固两相流动(如气体的湍动、 气泡行为和气固之间的相互作用等)的状态,SHAN-NON 熵值越大,说明塔内气固运动越剧烈或流动越 不稳定^[1]。

2 结果分析

2.1 压力信号随高度的变化

图 3 压力脉动信号随床高的变化

流化速度 Vf 和喷射速度 Vs 分别为 1.4 m/s 和 20.0 m/s 时,反应塔内不同高度处压力脉动信号的截 取片段如图 3 所示。从图中可以看到,当高度在 0~

?1994-2018 China Academic Journal Electronic Publish 928 mu之间时,压力脉动的振动幅度随着高度的增加

而降低。这是由于压力脉动受颗粒浓度影响很大。 在反应塔底部,颗粒浓度很高,气固之间的混合十分 激烈,因此压力信号的脉动十分明显;而在反应塔上 部,颗粒浓度明显减小,颗粒碰撞和气泡行为明显减 少,表现为压力信号较为平静。当高度进一步到达 13.2 m 时,压力脉动又明显增强,这是由于出口结构 的影响,在反应塔出口附近颗粒不断聚集碰撞,气固 之间的湍动比较强烈,因而流动也不稳定¹²。

不同高度处压力脉动信号的功率谱分析如图 4 所示。频谱图中较低的幅度说明了塔内处于典型的 低压降/颗粒浓度操作状态。从图中可以看到,频谱 图中较高的峰值皆出现在 2 Hz 以下,其后则为范围 较广的低幅区,不同高度处频谱幅度的差异主要表 现在 0~2 Hz 之间。在 Z=0 m 位置,功率谱幅度最 高,说明该处气固运动剧烈,气泡行为明显。随着高 度的增加,颗粒浓度不断降低,气固之间的动力学行 为不如反应塔底部那样复杂,气泡也明显减少,表现 为功率谱幅值逐渐下降。在 13.2 m 处出口附近颗 粒浓度再次增加,功率谱幅值有所上升,这与以上对 于压力信号的分析十分吻合。

图4 压力脉动信号频谱分析

2.2 流化速度对压力脉动的影响

流化速度分别为 0.8 m/s、1.1 m/s 和 1.4 m/s 时, 压力信号的 SHANNON 信息熵随床高的变化如 图 5 所示。在反应塔底部, 颗粒浓度较高, 气固流动 十分复杂, 压力脉动较为强烈, SHANNON 信息熵值 较大; 随着高度的增加, 气固流动趋于稳定, 压力信 号的脉动也逐渐降低; 直到出口附近, 信息熵值出现 略微上升。由此可见, SHANNON 信息熵随高度的变 化趋势能够很好地反映塔内气固流动的轴向变化。

从图中还可以看到, 流化气速对压力脉动信息 熵的影响十分明显, 随着流化速度的提高, 在不同高 度处的 SHANNON 熵值都明显上升。这是由于随着 流化速度的提高, 颗粒的扬析和夹带量不断增加, 系 统的循环倍率不断提高, 使反应塔内的颗粒浓度明 显增加, 气固湍流和气泡行为明显加强, 从而导致压 力脉动幅度增加。

图 5 流化速度对压力信 号SHANNON 熵的影响

※ 行例4-20日の (部間 不信しん): 円形 (開帯 Efection 形形 blishing House. All rights reserved. http://www.cnki.net

2.3 喷射速度对压力脉动的影响

图 6 为 $V_{\rm f}$ = 1.1 m/s 时,不同喷射速度对塔内 压力信号 SHANNON 信息熵的影响。由图可见,喷 射速度对压力脉动的影响不如流化气速明显,这是 由于实验中喷射气量与流化气量相比份额较低, $Q_{\rm f}/Q_{\rm s}$ 约在 22.5~84 之间;同时,SHANNON 熵在塔 底的变化比上部更加明显,说明喷射速度对塔内气 固流动行为的影响主要表现在反应塔底部区域。

图6 喷射速度对压力信号SHANNON 熵的影响

Fan 等将流化床分为 3 个区域^[13]。其中塔底区 域由于距离布风板和进料装置较近,其流动行为受 布风和喷射装置的影响很大,中间区域主要反映气 泡行为的变化,而顶部区域则由于气泡破碎和出口 结构导致流动的不稳定。底饲进料循环喷动床中, 底饲喷嘴附近高速喷射流的存在使塔底形成了高颗 粒浓度、高湍动度的气固混合,喷射速度的提高使反 应塔底部的气泡行为更加明显,压力脉动也更加强 烈。

2.4 回料量对压力脉动的影响

保持流化速度和喷射速度不变,调节放料管阀 门的开度,得到不同回料量下的压力脉动信息。从 图 7 中可以看到,回料量对压力脉动的影响十分明 显。这是由于回料量的改变直接导致反应塔内颗粒 浓度的改变。当流化气速较大且循环倍率很高时, 充分发展段达到饱和夹带并在床层底部形成了浓相 段,这时进一步增加回料量主要导致提升管下部浓 相段颗粒浓度的增加。而本实验采用的工况范围内 颗粒浓度较低,充分发展段的颗粒通量没有达到饱 和携带量,随着循环倍率的提高,反应塔内的颗粒携 带量随之增加,导致塔内轴向上的颗粒浓度全面升 高,其中反应塔底部的增加速度高于充分发展段。 从 SHANNON 信息熵的变化可见,随着回料量的增 加,在不同高度上的熵值都出现了增加的趋势,且反 应塔底部的增加幅度大于上部。由此可见,除了喷 射速度等因素的影响,SHANNON 信息熵的变化能够 很好地反应塔内气固流动复杂程度随颗粒浓度的变 化。

图7 回料量对压力信号 SHANNON 熵的影响

2.5 喷嘴位置对压力脉动的影响

图 8 喷嘴位置对塔底(Z=0m) 压力信号 SHANNON 熵的影响

调节喷嘴的高度,使喷嘴中心距离文丘里喉口 底端的高度 h 为 0.5 m,得到 h=0.5 m 时压力脉动 信号随表观速度的变化。喷嘴位置与喷射速度一 样,对底饲进料循环喷动床内流场特性的影响主要 表现在反应塔底部区域。采用不同喷嘴位置时,*Z* =0 m 处压力信号的 SHANNON 信息熵随表观速度 的变化如图 8 所示。由图可见,喷嘴位置提高时, SHANNON 信息熵在采用不同表观速度时都有明显 提高。分析其原因主要有两个方面:当 h=0.5 m 时,喷嘴距离回料管更近,因而导致底饲进料与循环 物料之间的碰撞和混合更加强烈,气固湍动程度进 一步提高, 使气固流动更加复杂和不稳定; 另一个原 因时喷嘴位置的提高使该处的压力测点距离底饲喷 嘴更近,因而受喷射流的影响更加明显。

3 结 论

(1) 压力特征信号是流化床或喷动床内气固流 动特征的综合反映, SHANNON 信息熵作为一种混沌 分析手段能够很好地反映特征信号的复杂程度和稳 定程度。应用 SHANNON 信息熵分析压力脉动的时 间序列不仅能够描述和解释气固流动随床层高度的 变化趋势, 而且对操作参数的改变也比较敏感, 为进 一步建立特征量与流动特征之间的联系提供了现实 基础。

(2)底饲进料循环喷动床底部的气固流动受喷射装置的影响很大。因此喷射速度和喷嘴位置是影响反应塔底部流场特性的重要因素。提高喷射速度和喷嘴位置,能使反应塔底部气固湍动更加强烈,气泡行为更加明显,反映在压力脉动信号上表现为SHANNON 信息熵的明显提高。

(3)随着高度的上升,塔内颗粒浓度不断降低, 因此压力脉动的幅度随床高逐渐降低。在反应塔顶 部,由于受出口结构的影响,颗粒不断聚集碰撞,动 力学行为比较复杂,气固湍动转为激烈,故 SHAN-NON 信息熵出现上升趋势。

(4)颗粒浓度是影响整个反应塔内气固流动特性的重要因素。提高流化速度和循环倍率能够使塔内轴向上的颗粒浓度增加,气固混合更加强烈,从而导致压力脉动的幅度增加。因此流化速度和循环倍率的提高能使整个床层上压力信号的 SHANNON 信息熵明显上升。

参考文献:

- MONAZAM E R, SHADCE L J, MEI J S, et al. Identification and characteristics of different flow regimes in a circulating fluidized bed[J]. Power Technology. 2005, 155(1): 17–25.
- [2] BI H T. A critical review of the complex pressure fluctuation phenomenon in gas— solids fluidized beds[J]. Chemical Engineering Science 2007, 62(13): 3473— 3493.
- [3] PUNCOCHAR M, DRAHOS J. Origin of pressure fluctuations in fluidized beds[J]. Chemical Engineering Science, 2005, 60(5): 1193-1197.
- [4] FAN L T, HO T C, HIRAOKA S, et al. Pressure fluctuations in a fluidized bed[J]. A IChE Journal, 1981, 27(3): 388–396.
- [5] PISKOVA E, MORL L. Characterization of spouted bed regimes using

pressure fluctuation signals [J]. Chemical Engineering Science 2008, 63(9): 2307-2316.

- [6] 张 毅, 彭园园. 循环流化床下料立管内气固两相流动状态与
 压力脉动的关系[J]. 过程工程学报, 2008, 8(1): 23-27.
- [7] JOHNSSON F, ZIJERVEID R C, SCHOUTEN J C, et al. Characterization of fluidization regimes by time—series analysis of pressure fluctuations[J]. International Journal of Multiphase Flow. 2000, 26(4): 663 -715.
- $\label{eq:JIAN XU, XIAOJUN BAO, WEISHENG WEI, et al. Statistical and frequency analysis of pressure fluctuations in spouted beds[J]. Power Technology, 2004, 140(1-2): 141-154.$
- [9] 赵贵兵,石炎福,段文锋,等.从混沌时间序列同时计算关联维 和Kolmogorov熵[J].计算物理,1999,16(3):309-315.
- [10] 钟文琪,章名耀.喷动流化床流动结构的 SHANNON 信息熵模 糊聚类分析[J].中国电机工程学报,2005,25(7):13-17.
- [11] 黄轶伦, 汪乐宇, 郑燕萍, 等. 气固流化床中信息熵的实验研究
 [J]. 高校化学工程学报, 2001, 15(2); 167-173.
- [12] ULRIKE LACKERMEIER, JOACHM WERTHER. Flow phenomena in the exit zone of a circulating fluidized bed[J]. Chemical engineering and Processing 2002, 41(9): 771-783.
- [13] HIRAOKA S, SHIN S H, FAN L T, et al. Pressure fluctuations in a gas—solids fluidized bed—effect of external noise and bubble residence time distribution[J]. Powder Technology, 1984, 38(2): 125— 143.

(编辑 陈 滨)

•书 讯•

《断裂力学中的数值 计算方法及工程应用》

本书系统地介绍了断裂力学中的数值方法以及工 程应用背景。全书共分6章,在第一章中全面介绍了 断裂力学中的3 个主要参数(应力强度因子、J积分和 能量释放率)以及相应的数值计算方法。在第二章中, 介绍了断裂单元的基本思想,同时给出基于商业有限 元软件ABAQUS 的子程序,供读者参考使用。在第三、 四章中分别介绍了针对线状裂纹和面状裂纹的虚拟裂 纹闭合法。第五章通过具体例题着重介绍了虚拟裂纹 闭合法在典型断裂分析中的应用。第六章则着重介绍 了虚拟裂纹闭合法的工程应用情况。读者对象:机械 工程、航空航天、船舶与海洋工程方面工程技术人员和 科学研究人员,相关专业研究生、高年级本科生及教师。

2009年8月出版。

mogorov entropy being 0.297 bits/s. Finally, it should be noted that during a practical boiler operation, various indexes featuring chaotic characteristics can be used to further depict an in-furnace system, thus offering further guidance for the optimized operation of a utility boiler. **Key words**: pulverized coal-fired boiler, furnace pressure, chaotic characteristics

底饲进料循环喷动床内压力脉动信号的 SHANNON 信息熵分析= A Shannon Information Entropy Analysis of Pressure Fluctuation Signals From an Underfed Circulating Spouted Bed[刊,汉]/ TAO Min, JIN Bao-sheng, YANG Ya-ping (College of Energy Source and Environment, Southeast University, Nanjing, China, Post Code: 210096), XUE Yu-lan (East China Electric Grid Co. Ltd., Shanghai, China, Post Code: 200002)// Journal of Engineering for Thermal Energy & Power. — 2009, 24(5). — 618~622

To study the gas-solid two phase flow characteristics of an underfed circulating spouted bed, the authors have measured the pressure fluctuation signals at various heights in the axial direction of a reaction tower through a cold-state test, analyzed the pressure signals by using Shannon information entropy and compared the influence of different operating conditions on the gas-solid two-phase flow in the tower. It has been found that the pressure fluctuation and its power spectrum display different characteristics at different heights of bed layers and Shannon information entropy can reflect very well the complexity and stability degree of the characteristic signals. Enhancing the fluidized velocity and circulation ratio can lead to an increase of particle concentration in the axial direction of the tower, thus enhancing the amplitude of the pressure fluctuation. To increase the jet flow velocity and heighten the nozzle location can intensify the gas-solid turbulent flow at the bottom of the tower and Shannon information entropy can be increased accordingly. **Key words:** underfed circulating spouted bed, gas-solid two-phase flow, pressure fluctuation, Shannon information entropy

球磨机中颗粒混合运动的数值模拟=Numerical Simulation of Particle Mixing Movement in a Ball Mill[刊, 汉] / GENG Fan, YUAN Zhu-lin, MENG De-cai (College of Energy Source and Environment, Southeast University, Nanjing, China, Post Code: 210096), LI Shan-lian (Key Laboratory on Tobacco Processing Technologies for Tobacco Processing Industry, Zhengzhou Academy of Tobacco, Zhengzhou, China, Post Code: 450001)// Journal of Engineering for Thermal Energy & Power. - 2009, 24(5). -623~629

In view of the current situation that ball mills are widely used in thermal power plants and very little information about their inner particle mixing movements is known to us, a discrete elementary method is used to directly track every particle in a ball mill. By considering the joint action of gravity force, friction and collision resistance received by these particles, established was a three-dimensional dynamic model for the particles and numerically simulated was the whole process of their mixing movement in the ball mill. The influence of the key parameters, such as particle diameter, density and granularity unevenness etc. on the characteristics controlling the complex movement of particles in the ball mill was emphatically studied. The research results show that with the turning of the ball mill, all the particles in every area of the ball mill are gradually well mixed. The uniformity of such mixing in the ball mill at various places, however, is different. In the case of an identical filling rate, the time required by the small particles to mix uniformly is relatively long. In the event of an identical particle diameter, the time required by the particles with a higher density to mix uniformly is also relatively long. When the particle diameters are not uniform, with the turning of the ball mill, a layer-separation phenomenon will occur to the particles. **Key words**; ball mill, discrete elementary method, mixing movement, numerical simulation

火电厂钢球磨煤机负荷的灰色 PID 控制系统研究= Study of a Grey PID (Proportional, Integral and Differential) Control System for Ball Mill Load in a Thermal Power Plant[刊,汉] / CHENG Qi-ming, MIN Le-cong, LI Qin, et al (College of Electric Power and Automation, Shanghai University of Electric Power, Shanghai, China, Post Code: 200090)//Journal of Engineering for Thermal Energy & Power. - 2009, 24(5). -630~634 (1994-2009.4.1) (Www.cnki.net