热力涡轮机械

文章编号:1001-2060(2008)04-0338-06

PG9171E型燃气轮机变工况计算模型的建立

夏 迪,王永泓

(上海交通大学叶轮机械研究所,上海 200030)

摘 要:为了建立 PG9171E 型燃气轮机变工况计算模型,必须根据电厂提供的原始数据建立该机型的压气机特性。由于现有基线估算方法的建立未包含高压比压气机实验数据,故一般只被应用于压比小于11的压气机特性估算,而PG9171E型燃气轮机的压气机压比已接近12。为了解决这 问题,在压气机特性计算过程中首次提出分段计算法,计 算结果表明:该方法的精度能够满足实际应用要求。在变工况计算模型的燃气热力性质计算方面,根据热力性质表^[2], 归纳出空气、CH2燃气、C燃气和水蒸气的热力性质通用关系式,简化了燃烧室燃用重油时的湿燃气焓值和对数压比值的计算过程,变工况计算模型的计算结果与燃气轮机实测参数进行比较,表明上述改进方法在实际应用中能够满足建模 精度的要求。

关 键 词: 压气机特性; 燃气热力性质; 变工况计算模型

中图分类号: TK39 文献标识码: A

符号说明

P ₀ —大气压力;	H_{c}^{-} 压气机焓降;
P_1 一压气机进气压力;	H2-压气机出口焓;
P ₂ —压气机排气压力;	M_{a}^{-} 压气机空气流量;
P ₃ —涡轮进口压力;	<i>M</i> _f 燃料流量;
σ _{in} —进气压损;	N-燃料氢碳摩尔比;
$\sigma_{ m B}^{-}$ 燃烧室总压恢复系数;	M-燃料摩尔分子量;
σ _{out} —排气压损;	₽─燃料密度;
π _c —压气机压比;	QL-燃料低热值;
^π 涡轮膨胀比;	NE-发出功率;
T ₁ —压气机入口温度;	<i>T</i> ─温度;
T ₂ —压气机出口温度;	<i>P</i> ─总压;
T ₃₃ 一燃烧室出口温度;	₩─ 质量流量;
T ₃ —涡轮进口温度;	<i>f</i> —油气比;
T ₄ —涡轮排气温度;	CPM-压气机特性图;

η。一 压气机效率;	η _g — 发电机效率;
$\eta_{ m B}$ — 燃烧室效率;	TPM-涡轮特性图;
η _ι 涡轮效率;	₩ _c - 压气机耗功;
$\eta_{ m m}$ 一涡轮机械效率;	₩ _T — 涡轮发出功率

引 言

近年来我国发电行业快速发展,引进了美国GE 公司的 PG9171E 型燃气轮机。随着机组的运行,对 机组状况的评估也越来越受到重视。国内外大量研 究和实践表明:基于燃气轮机部件特性的机组变工 况计算模型,在相当程度上可以反映机组的实际运 行状况。为了评估机组运行多年之后的性能水平, 必须尽早建立起一套相应的变工况模型,但由于该 模型核心的机组部件特性的各种原因,获取代价高 昂。为了解决这个问题,本文试图根据传统的基线 估算法来建立起机组部件特性。但实际应用时发现 基线估算法的压气机压比不能超过 11^[1],否则误差 太大。为此,本文在基线估算法的基础上提出了分 部计算法。在燃气热力性质计算方面,本文推导出 了空气、CH2 燃气、C 燃气和水蒸气的焓值及对数压 比值的计算通用公式^[2]。

1 循环计算

表 1 列出了 9E 机组的有关数据,图 1 为循环计 算程序的框架。基于循环计算结果,本文进行了压 气机特性的计算和燃气的热力性质计算。

收稿日期: 2007-09-04; 修订日期: 2007-10-24

作者简介:夏 迪(1980—),男,上海人,上海交通大学博士研究生.

表1 循环计算过程所需已知数据

	数值
大气压力/ MPa	0. 100 9
压气机空气流量/ $ m kg^\circ h^{-1}$	1 440 000
进气压损/Pa	186.314
压气机进口温度/ K	294.5
压气机冷却抽气系数	0.12
压气机排气压力/MPa	1. 189 2
压气机出口温度/ K	620.2
燃烧室总压恢复系数	0.97
燃烧室效率	0.99
燃料氢碳摩尔比	1.75
燃料摩尔分子量/ $\lg^{\circ} kmol^{-1}$	1 000
燃料低热值/ kJ° kg ⁻¹	44 750
燃料密度/ kg°L ⁻¹	0.8654
燃料流量/ L° h ⁻¹	31 507
透平导叶前冷却空气量	0. 106
涡轮排气温度/ K	804.67
排气压损/ Pa	686.42
涡轮机械效率	0.99
发电机效率	0.98
发电机输出功率/MW	110.4

注: 表中粗体字为可测参数, 其余各参数根据文献[3~5] 选取。

图1 循环计算结构框图

2 压气机特性线分段计算法

目前比较实用的压气机特性计算方法是 NASA 公布的基线估算法¹,该方法是通过已收集到的 8 台多级轴流压气机的实验数据总结而成的,对压比 在小于11的压气机来说,按照该方法计算得出的压 气机特性线具有一定的实际意义和准确性。基线估 算法的计算程序分3个步骤:首先计算各转速下的 最高效率点,称为"基准点",由其连成的最高效率线 称为"基线",沿这条线上的各点称为"基点";然后, 确定压气机的失速极限线,该线上的点称为"失速极 限点": 最后, 计算沿各等转速线上的各点, 从失速极 限到最大流量,确定等转速特性。本文中 PG9171E 型燃气轮机的压气机压比为 11.8, 超出了基线估算 法建立时的实验数据范围,在用基线估算法进行计 算时存在较大误差,本文提出一套新的适合干高压 比压气机特性的计算方法,结果显示该方法可行,而 且不影响特性线的准确性。

2.1 分段计算特性

本文提出的分段压气机特性计算方法即将压气 机分为压比相同的 AC 和 BC 两部分,如图 2 所示, 然后分别求取 AC 和 BC 的压气机特性;通过插值计 算再将 AC 和 BC 两部分的特性合二为一,以达到计 算高压比压气机特性的目的。在最后合并过程中, 压气机总流量根据 AC 部分流量确定,总效率根据 AC 和 BC 两部分效率特性求得。

图 2 压气机特性分部计算示意图

已知设计工况下压气机压比 π_{c} , 压气机入口温度 T_{1d} 和压气机出口温度 T_{2d} , 就可根据 $\pi_{c}^{n} = T_{2d}$, T_{1d} 求出压气机设计工况的多变指数 n; 取压比 $\pi_{1d}^{*} = \sqrt{\pi_{c}}$ 作为分段计算中 AC 和 BC 部分的分割点, 可

3?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

比,可求得前半部压气机 AC 的效率为: $\eta_{1d}^* = \frac{(\pi_{1d}^{*})^{(K-1)/K} - 1}{(T_d^*/T_{1d}) - 1}$ 。给定压气机 AC 部分设计工况下的进口温度 T_{1d} 、进口压力 P_{1d} 、入口流量 GD(kg/s)、压比 π_{1d}^* 和效率 η_{1d}^* ,就可估算出 AC 的特性^[1]。根据 $\pi_{1d}^{*} = \pi_{2d}^{*} = \sqrt{\pi_c}$,可知 $\frac{T_{2d}}{T_d^*} = \frac{T_d^*}{T_{1d}} = (\pi_{1d}^*)^n$, $\eta_{1d}^* = \eta_{2d}^* = \frac{(\pi_{2d}^{*})^{(K-1)/K} - 1}{(T_{2d}/T_d^*) - 1}$ 。将 AC 部分的出口温度 T_d^* 给定为后半部压气机 BC 部分的进口压力,其它参数同 AC 部分特性计算给定值,可求出 BC 部分特性^[1]。

2.2 特性重组

已知 AC 和 BC 两部分的特性,假定压气机运行

压比为
$$\pi$$
,入口折合转速为 $\bar{n} = \frac{n/\sqrt{\frac{T_1}{288}}}{(n/\sqrt{\frac{T_1}{288}})_d}$ (式中下

标 d 是指设计点参数),则可根据 AC 压比 $\pi_1^* = \sqrt{\pi}$ 在 AC 部分的特性线中插值求得效率 η_1^* 和压气机 入口折合流量 *G*(即重建所用的压气机总折合流 量)。根据 π_1^* 和 η_1^* ,可求出 AC 进排气温比 $\tau_1^* = T^*/T_1 = 1 + ((\pi_1^*)^{(K-1)/K} - 1)/\eta_1^*$,并可进一步求 出 BC 部分的折合转速:

已知 BC 部分的折合转速 \bar{n}^* 和压比 $\pi_2^* = \sqrt{\pi}$,

可求出 BC 部分的效率 η_2^* 和温比 $\tau_2^* = T_2/T^* = 1$ +((π_2^*)^{(K-1)/K}-1)/ η_2^* 。已知总温比 $\tau_c = \tau_1^* \circ$ τ_2^* ,就可以求出压气机总效率 $\eta_c = \frac{(\pi_1^* \circ \pi_2^*)^{(K-1)/K} - 1}{\tau_c = 1}$ 。

给定不同的 AC 入口折合转速和压气机总压 比,就可以根据上述方法求取相应的总折合流量 G 和总效率 n。并可据此绘制出整台压气机的特性图, 如图 3 所示,图中失速极限线也是根据 AC 和 BC 特 性重新计算得到。表 2 为图 3 插值计算结果与燃气 轮机循环计算结果的比较(其中流量比较是将特性 图的折合流量插值结果转换为质量流量与循环计算 结果相比较),由表 2 可见,分段计算法的精度较高, 能够达到实用要求。

图 3 分段计算法所得压气机特性曲线

表 2 特性线插值计算结果与燃气轮机循环计算结果比较

折合转速	压比		效率	误差/ %	流量/kg°h ⁻¹	误差/ %
1	11.804	循环计算	0.842 275		1.44E+6	- 0.006 25
		特性插值	0.841 864	-0.048 820 237	1.43991E+6	
1	9.709	循环计算	0.8268		1.47E+6	0. 298 426 5
		特性插值	0. 828	0.145 1	1. 4744E+6	
1.034	12.434 2	循环计算	0.833 682		1.472E+6	0. 157 360 7
		特性插值	0.834 225	0.065 090 353	1.47432E+6	

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

3 燃气热力性质计算及通用式的提出

在燃气热力性质计算方面,分别采用了文献[2, 6]的方法。基于文献[6]的燃气热力性质计算是在 标准燃料 C₈H₁₆燃气的基础上乘以系数进行校正,而 文献[2]则是在文献[6]的基础上将不同碳氢组成的 烃燃料假定为一定比例的 CH₂ 和 C 混合燃料,燃气 也相应地分为 CH₂ 燃气和 C 燃气,分别计算好 CH₂ 燃气和 C 燃气的热力性质后,就可按照先前假定的 比例计算出整体燃气的热力性质。由于适用于各种 燃料的热力性质计算,并且还适用于喷水后的湿燃 气热力性质计算,该方法目前被广泛采用,并在应用 过程中被证明是准确和有效的。

本文归纳出空气、CH2 燃气、C 燃气和水蒸气的 焓值及对数压比值的计算通用式,并与湿空气和烃 燃气热力性质图表进行比较,所推导出的通用式精 度符合要求,适用于今后的燃气热力性质的计算,有 助于减少该计算的工作量。

根据文献[2]的方法,燃烧室燃用重油的反应方 程为:

$$\beta CH_{n} + (1 + \frac{n}{4})O_{2} + (1 + \frac{n}{4})xN_{2} + Y_{W}H_{2}O = \frac{n}{2}\beta(CO_{2} + H_{2}O + \frac{3}{2}xN_{2}) + (1 - \frac{n}{2})\beta(CO_{2} + xN_{2}) + (1 + \frac{n}{4})(1 - \beta)(O_{2} + xN_{2}) + Y_{W}H_{2}O$$
(1)

式中: x 取 3.773 82 为空气中氦氧比例, Y_W 一喷水 系数(此次计算无喷水,故取零); β 一燃料摩尔系数; n一燃料中氢碳摩尔比,此处根据推荐 n 取 1. 75^[6]。

式(1)的热平衡方程为:

$$\frac{n\beta}{2}(2+\frac{3}{4}x)HI + (1-\frac{n}{2})\beta(1+x)HI + (1+\frac{n}{4})\times(1-\beta)(1+x)HA + Y_{W}(H_{WH}-H_{WL}) + Y_{W}R_{W} = \beta H_{U}\eta_{B} + (1+\frac{n}{4})(1+x)I_{1}M_{a}$$
(2)

式中: HI—CH₂ 燃气焓值; HI—C 燃气焓值; HA—纯 空气焓值; H_{WH} —出口水蒸气焓值; H_{WL} —入口水焓 值; R_W —水的汽化潜热值(43 965 kJ/kmol); H_U —燃 料热值; η_B —燃烧室效率; M_a —空气摩尔质量; I_1 — 入口空气焓, kg/kmol。根据式(2)可求出燃料摩尔 系数:

$$\beta = \frac{\left(\left(1+\frac{n}{4}\right)\left(1+x\right)I_{1}M_{a}-Y_{W}R_{W}-Y_{W}\left(H_{WH}-H_{WL}\right)-\left(1+\frac{n}{4}\right)\left(1+x\right)HA}\right)}{\left(\frac{n}{2}\left(2+\frac{3}{2}x\right)HI+\left(1-\frac{n}{2}\right)\left(1+x\right)HI-\left(1+\frac{n}{4}\right)\left(1+x\right)HA-H_{U}\eta_{B}\right)}$$
(3)

根据式 (3)得出 β 后, 湿燃气的对数压比值和 焓值可按下式进行计算:

$$\lg \pi_{n,\beta} = \frac{(M_{00_2} + M_{H_20} + \frac{3}{2} xM_{N_2}) \frac{n}{2} \beta \lg i + (1 - \frac{n}{2}) \beta (M_{00_2} + xM_{N_2}) \lg j + (1 + \frac{n}{4}) (1 - \beta) (M_{0_2} + xM_{N_2}) \lg a + Y_W M_{H_20} \lg wh}{(M_{00_2} + M_{H_20} + \frac{3}{2} xM_{N_2}) \frac{n}{2} \beta + (1 - \frac{n}{2}) \beta (M_{00_2} + xM_{N_2}) + (1 + \frac{n}{4}) (1 - \beta) (M_{0_2} + xM_{N_2}) + Y_W M_{H_20}}$$
(4)
$$i_{n,\beta} = \frac{\beta \frac{n}{2} (2 + \frac{3}{2} x) HI + \beta (1 - \frac{n}{2}) (1 + x) HI + (1 - \beta) (1 + \frac{n}{4}) (1 - \beta) (M_{0_2} + xM_{N_2}) + Y_W M_{H_20}}{(M_{00_2} + M_{H_20} + \frac{3}{2} xM_{N_2}) \frac{n}{2} \beta + (1 - \frac{n}{2}) \beta (M_{00_2} + xM_{N_2}) + (1 + \frac{n}{4}) (1 - \beta) (M_{0_2} + xM_{N_2}) + Y_W M_{H_20}}$$
(5)

式中: $\lg \pi_{n,\beta}$ 一燃料系数为 β 时的 CH_n 燃气对数压 比值; $i_{n,\beta}$ 一燃料系数为 β 时的 CH_n 燃气焓值, kJ/ kg。 M_{CO_2} 取 44.01 为二氧化碳千摩尔公斤质量, M_{H_20} 取 18.02 为水蒸气千摩尔公斤质量, M_{N_2} 取 28 为氮气千摩尔公斤质量, M_{O_2} 取 32 为氧气千摩尔公 斤质量。 $\lg i$ —CH2 燃气对数压比值; $\lg j$ —C 燃气对 数压比值; $\lg a$ —纯空气对数压比值; $\lg wh$ —水蒸气

对数压比值。

根据湿空气和烃燃气热力性质图表后的附表, 本文列出空气、CH₂燃气、C燃气和水蒸气的焓值及 对数压比值的通用式:

 $\frac{i}{\lg\pi} = A + B \circ T + C \circ T^2 + D \circ T^3 + E \circ T^4$ 式中各系数如表 3 所示。

玄 粉		٨	D	C	D	F
示 蚁		Λ	В	L	D	E
	$i_{\beta=21}^{\text{CH}}$	- 2 414 . 426	32. 560 23	0.002 27	—	—
	$lg\pi \stackrel{CH}{_{\beta=1}}$	1. 533 37	0.006 04	−9. 54E-07	—	—
	$i^{\mathrm{C}}_{\beta=1}$	- 3 128 . 775	33. 853 56	0.001 91	_	_
1 100 ~ 1 800 K	$\lg\!\pi^{C}_{\beta=1}$	1. 752 36	0.006 18	-9.92E-07	—	—
	$i_{\beta=0}$	- 1 <i>5</i> 96. <i>5</i> 8	0. 292 64	0.001 58		—
	${\rm lg}\pi_{\beta=0}$	1. 678 99	0.005 5	-8.88E-07	—	_
	$i^{\mathrm{H}}_{\beta \equiv 0}$	600. 583 4	29. 441 77	0.005 95	—	—
	$\lg \pi \frac{H_2 0}{\beta = 0}$	-2. 768 8	+0.01562	-8. 17E-06	1.872E-09	_
	$i_{\beta=1}^{\mathrm{CH}}$	219. 255 22	27.84084	0.004 4		
	$lg\pi \stackrel{CH}{_{\beta=2}}_{1}$	- 3. 690 13	0.026 35	−3. 34E-05	2.452E-08	-7.2E-12
	$i_{\beta=1}^{C}$	- 7. 509 45	28. 113 88	0.004 59		
250~1 100 K	$\lg\!\pi_{\beta=1}^C$	- 3. 393 66	0.025 94	-3. 22E-05	2.347E-08	- 6. 86E-12
	$i_{eta=0}$	396. 855 3	26. 742 38	0.003 16		
	${\rm lg}\pi_{\beta=0}$	— 3. 452 62	0.025 63	-3. 33E-05	2.469E-08	— 7. 29E-12
	$i^{\mathrm{H}}_{\beta} = 0$	600. 583 4	29. 441 77	0.005 95		
	$lg\pi \stackrel{\rm H_2O}{_{\beta = 0}}$	- 3. 712 18	0.021 1	-1.82E-05	9.03E-09	— 1. 74E-12

表 3 燃气热力性质通用计算式系数

现将两种方法计算结果比较如表4所示。

表 4 通用式计算比较

	燃气温度/K	燃料中氢碳摩尔比	燃料摩尔系数	焓/ kJ°kg ⁻¹	公式计算误差/ %
图表插值	1 370.95	2.35	0.004 723 46	1 481.68	
通用式计算	1 370.95	2.35	0.004 723 46	1 481. 710 5	0.002 06
图表插值	1 000	1.5	0. 5	1 079. 55	
通用式计算	1 000	1.5	0. 5	1 080. 204	0.0606
图表插值	1 000	3	0. 5	1 101. 32	
通用式计算	1 000	3	0.5	1 103. 563	0. 203 7

由表4可见,通用式的计算结果与燃气的热力 性质表的查询结果基本相同,由此可知,本文所推导 出的燃气热力性质通用计算式适用于今后燃用重油 的湿燃气热力性质计算,并能简化计算过程。

4 PG9171E 型燃气轮机变工况程序

根据第2节中计算所得的压气机特性,并应用 上文提出的热力性质通用计算式,建立了 PG9171E 型燃气轮机的变工况计算程序,如图4所示。给定 油量、入口温度、入口压力、转速、压气机和涡轮特性 曲线后,变工况程序可以计算出真实机组上相应测 点的测量参数估算值。表5显示变工况输出结果与 真实测量值非常吻合,这说明本文提出的压气机特 性计算方法和燃气热力性质通用式的计算精度符合 实际应用要求。

图4 PG9171E型燃气轮机变工况程序图

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 5 计算参数 与实测参数比较

		油量 / kg ° s ⁻¹				
		5.090 25	7. 325 78	8.035 23	9. 246 79	
	实测值	40	70	80	100	
NE/MW	计算值	40. 23	70.36	79.5	100. 899	
	误差/ %	- 0. 575	-0.51429	0.625	- 0.899	
<i>T</i> ₄ / K	实测值	643. 705 6	678.15	710.372 2	772.0389	
	计算值	642	679.981 5	712.632	770. 897	
	误差/ %	0.264 96	-0.27007	-0.318 11	0. 147 906	
<i>P</i> ₂ / MPa	实测值	0.770 34	0. 972 41	0.986 21	1.04828	
	计算值	0.774	0.97041	0.979	1.039	
	误差/ %	-0.475 11	0.205 675	0.731 082	0.88526	

5 结 论

在 PG9171E 型燃气轮机变工况程序的建立过 程中,提出用分段法建立压气机特性曲线,有效解决 了基线估算法在高压比压气机特性估算时的精度问 题;并在燃气热力性质计算过程中归纳出空气、CH₂ 燃气、C 燃气和水蒸气的焓值及对数压比值的计算 通用式,有效简化了燃用重油的湿燃气热力性质的 计算过程。最后通过比较变工况计算模型的计算结 果和机组实测参数,证明了上述方法的准确性。

该模型的建立有助于今后根据可测参数对 PG9171E 型燃气轮机进行性能评估,其评估结果将 为电厂运行提供检修依据。

参考文献:

- [1] 秦 鹏. 轴流压气机气动设计[M]. 北京: 国防工业出版社, 1975
- [2] 严家碌. 湿空气和烃燃气热力性质图表[M]. 北京: 高等教育出版社, 1988.
- [3] 刘晨光,朱春媚.减压渣油热反应特性与原料组成的关联[J]. 石油学报(石油加工),1999,15(1):1-7.
- [4] 杨松鹤. GE 公司重型 燃气轮机 系列发展分 析[J]. 燃气轮机 技术, 2002, 13(1); 24-27.
- [5] BROOKS FRANK J. GE gas turbine performance characteristics[R]. GER= 3567a USA: GE Power Systems, 1993.
- [6] 吴仲华. 燃气的热力性质表[M]. 北京: 科学出版社, 1959.

(编辑 伟)

船舶燃气轮机

WR-21 发动机已装用于第二艘 45 型驱逐舰

《Diesel & Gas Turbine Worldwide》2007年9月号报道,装用 WR-21 发动机的英国海军第二艘45 型驱逐舰 已于 2007年在苏格兰 BAE Systems 的造船厂下水。

该舰排水量为 8 000 t, 长 度为 152 m, 航速可超过 27 节, 它是一艘执行 多种任务的护卫战舰, 尤其是提供 了很强的防空能力。

每艘驱逐舰由两台 Rolls-Royce WR-21 船舶中间冷却回热式燃气轮机驱动, WR-21 被设计成在整 个适用的功率范围内能明显改进船舶燃气轮机的效率。WR-21 是根据 Rolls-Royce RB211 和 Trent 系列商用航空发动机改型的。

WR-21 平稳的燃料消耗,特别适用于电力驱动。对于机械系统,它既可以是巡航发动机,又可以是加速发动机,这就允许设计者重新审视推进系统的设计。与简单循环燃气轮机比较,它将使燃料消耗减少27%。

中间冷却器位于低压压气机和高压压气机之间,冷却低压压气机出口的空气,降低了高压压气机进气温度,从而减少了高压压气机的耗功,导致发动机功率明显的提高。

回热器是从热排气回收并转移热能的热交换器,用它来预热燃烧空气,因此需要较少的燃料就能达到同样的输出功率。通过降低到回热器的进气温度,中间冷却器增强了回热器的效果,从而增加了热回收。

(吉桂明 供稿)

我国电站锅炉煤粉直接点火技术的发展以及现状= Development and Status Quo of Utility-boiler Pulverizedcoal Direct-ignition Technologies in China [刊,汉] / NIE Xin (College of Mechanical Engineering, Hangzhou University of Electronic Science and Technology, Hangzhou, China, Post Code: 310038), ZHOU Jun-hu, WANG Yang, CEN Ke-fa (National Key Laboratory on Clean Utilization of Energy Sources, Zhejiang University, Hangzhou, China, Post Code: 310027) // Journal of Engineering for Thermal Energy & Power. - 2008, 23(4). -333~337

The working principles and burner structures of various pulverized-coal direct-ignition technologies currently available in China as well as their development and application status are expounded along with the respective merits and demerits being pinpointed. Several omnipresent problems concerning the safety of the burners in question are summarized. To solve the contradiction between the operation safety and oil savings now troubling the power generation industry of China, two approaches were proposed: the first approach involves the adoption of multiple regulating means to reduce the pulverized-coal flow ignition heating, and the second is to integrate the use of direct-ignition technology with traditional ignition oil guns. It should be noted that high-temperature air direct-ignition technology enjoys a relatively high technical advantage due to its flexible regulating means. **Key words:** pulverized coal, oil saving, direct ignition, safe operation, ignition heat

PG9171E 型燃气轮机变工况计算模型的建立= Modeling for the Calculation of Off design Operating Conditions of a Model PG9171E Gas Turbine[刊,汉] / XIA Di, WANG Yong-hong (Turbo-machinery Research Institute, Shang-hai Jiaotong University, Shanghai, China, Post Code: 200030)// Journal of Engineering for Thermal Energy & Power. - 2008, 23(4). - 338 ~ 343

To set up a calculation model for the off-design conditions of a PG9171E gas turbine, it is necessary to identify the compressor characteristics of the gas turbine in question on the basis of the original data provided by the power plant. As the current base-line estimation method was established without considering any experimental data of compressors at highpressure ratios, in general, it can only be used for the estimation of compressor characteristics at a pressure ratio less than 11. However, the pressure ratio of the PG9171E gas turbine compressor has already approximated to 12. To solve this problem, a section-by-section calculation method was for the first time proposed for the calculation of compressor characteristics. The calculation results show that the accuracy of the above method can meet the requirement of practical applications. In respect of the calculation of thermodynamic properties involved in an off-design condition calculation model, a general-purpose relationship for the thermodynamic properties of air, CH₂ gas, C gas and steam was inducted based on thermodynamic properties table No. 2. This simplifies the calculation process of wet combustion gas enthalpy and logarithmic pressure ratio values when the combustor operates on heavy fuel oil. A comparison of the calculation results of the offdesign condition calculation model with the actually measured parameters of the gas turbine shows that the above-mentioned improved method can meet the requirement for the modeling accuracy in practical applications. **Key words:** compressor characteristics, combustion gas thermodynamic properties, off-design condition calculation model

汽轮机凝汽器喉部流动性能的微型模化试验研究= Experimental Study of Micro-modeling of Flow Performances in the Condenser Inlet of a Steam Turbine[刊,汉] / ZHANG Lei-lei, CUI Guo-min, GAO Xiao-zhong, et al (Thermodynamic Engineering Research Institute, Shanghai University of Science and Technology, Shanghai, China, Post Code: 200093)// Journal of Engineering for Thermal Energy & Power. - 2008, 23(4). - 344~347

Under the precondition of ensuring an identical flow state and by using similarity theory and a method under which a model is subjected to a blowdown in a wind tunnel, established was a set of miniature modeling device for a condenser inlet. An experimental study has been conducted of the flow performances at the condenser inlet under different inlet-flow speeds. The test results show that the modeling test device in question can not only reduce the size of the model and the cost of testing, facilitating the conduct of the test, but also achieve a repeatability of the flow conditions in the condenser inlet. It can be used for the experimental study of the flow friction performance and flow conditions of any condenser inlet. **Key words:** condenser inlet, miniature-modeling device, flow friction, similarity theory

随机参数汽轮机叶片频率的随机有限元分析=Stochastic Finite Element Analysis of Turbine Blade Frequencies at Random Parameters[刊,汉] / AN Li-qiang, WANG Zhang-qi (Mechanical Engineering Department, North China University of Electric Power, Baoding, China, Post Code: 071003)// Journal of Engineering for Thermal Energy &