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variable speed regulation, flow guide regulation

HHT  RBF = The Application of HHT and RBF Neural Net-
works for Processing Fault-vibration Signals from Centrifugal Pumps| , |/ ZHOU Yun-long, HONG Jun,
ZHAO Peng (College of Energy Source and Mechanical Engineering under the Northeast University of Electric Power,
Jilin, China, Post Code: 132012)// Journal of Engineering for Thermal Energy &Power. — 2007, 2 (1). — 84~ 87

According to the specific features of fault-vibration signals of a centrifugal pump, presented is a new method for fault di-
agrosis of vibration signals of a centrifugal pump by employing a combination of Hilbert-Huang transformation (HHT ) and
a radial basis function (RBF) neural network. First, the time series data from the vibration signals of a centrifugal pump
is subject to an empirical mode decomposition (EMD) followed by a Hilberi-Huang Transformation to obtain the energy of
various intrinsic mode functions (IMF). Moreover, with ”energy ratio” serving as an element, the eigenvector obtained
from vibration signals of the centrifugal pump by utilizing the energy ratio can depict very well fault information for differ-
ent vibrations. By using a RBF neural network, the mapping extending between the eigenvecior and fault modes can be
established to realize a fault diagnosis, thus achieving a high diagnostic rate for such conditions as nomal state, mass im-
balance, rotor misalignment and foundation loosening fault of a centrifugal pump. The experimental research resulis show
that the method under discussion can effectively diagnose the vibration signals of a centrifugal pump. Key wrods: cen-
trifugal pump, Hilbert-Huang transfomation, RBF (radial basis function) neural network, fault diagnosis

= Discrimination of the Local Nonlinear Model of a Thermodynamic System| .
]/ DONG Jun-hua, XU Xiang-dong (Department of Themal Energy Fngineering, Tsinghua University, Beijing, Chi-
na, Post Code: 100084)// Journal of Engineering for Themal Energy &Power. — 2007, 22 (1). —88~90, 95

In a multi-model control (MMC) version, a majority of local models ate based on a linear model and their number and
accuracy may influence the effectiveness of the multi-model contwl. An algorithm for the discrimination of nonlinear mod-
els is proposed based on a radial basis function (RBF) neural network. By adopting a nonlinear model structure proposed
by G. B. Sentoni and others and utilizing the approximation ability of a radial basis function (RBF ) neural network, re-
alized was the discrimination of monlinear models in a thermodynamic system. During the process of leamning the RBF
neural network, one can accelerate the wnverging process of leamning by regulating the leaming speed acording to a per-
formance function. Finally, a simulation verification was conducted. A multi-model control system based on wo local lin-
ear models instead of five local nonlinear models can diminish the oscillation during a swilching-over with the control ac-
curacy being somewhat enhanced. The experimental resulis indicate that the discrimination algorithm under discussion can
reduce the number of fixed models, thereby shortening model searching time and raising model prediction accuracy. Key
wrods: themodynamic system, local model, non-linearity, RBF neural network

= Discrimination of a Thermodynamic Object Based on a Minimum
Resource Allocation Network] , |/ YANG Shi-zhong, TU Jian-hong (College of Energy Source and Environment
under the Southeast University, Nanjing, China, Post Code: 210096)// Joumal of Engineering for Thermal Energy &
Power. — 2007, 22 (1). —91~95

The establishment of a comprehensive nonlinear model for a thermodynamic process serves as a basis for the overall opti-
mization of a themmodynamic control system. However, it is difficult for a static neural network to establish a model for
nonlinear dynamic processes. A resource allocation network (RAN) lends itself to dynamically adjust the netvoik param-
eters while an extension Kalman filter (EKF) algorithm can accelerate the converging speed. By organically combining
the above-mentioned methods and adding on this basis pruning tactics and a sliding-window root-mean-square criterion,
an improved minimum resource allocation network (MRAN) can be fomed. The improved MRAN has been applied to the
nonlinear dynamic modeling of a typical thermodynamic process. The simulation results show that the MRAN features a

compact netork structure_and high modeling accuracy, thus. making it suitable for on-line applications. Finally, analyzed
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is the impact of network initial parameters on its performance. Key wrods: neural network, minimum resource allocation

network, modeling, thermodynamic pocess

U = A Study of Heat Exchange Characteristics of Vertical
U-shaped Embedded Tubes Based on an Element Energy Balance Method [ , |/ YANG Wei-bo, SHI Ming-
heng (Department of Power Engineering, Southeast University, Nanjing, China, Post Code: 210096)// Journal of Engi-
neering for Thermal Energy &Power. — 2007, 22 (1). —96 ~100

Based on a method of element energy balance, established was a heat exchange model for vertical U-shaped embedded
tubes. The model has taken account of the liquid temperature change along their flow path. The thermal interference
poblem between two tube feet has been reflected thwough the introduction of a thermal interference angle and an equiva-
lent heat-transfer spacing, making the model more in compliance with the actual heat transfer conditions. Based on the
model, a mumerical simulation was conducted of the heat exchange characteristics of the U-shaped embedded tubes. The
simulation results show that an increase in the heat wnduction coeflicient of soil and backfill substance, spacing between
the tube feet and in-tube fluid flow rate and a decrease in the thermal interference angle of the tube feet and inlet fluid
temperature under heat supply conditions can all lead to a better heat exchange effectiveness of the embedded tubes. A-
mong the above faciors, the heat conduction coefficient of the soil exercises a most conspicuous influence but that of the
backfill substance shall not be increased unrestrictedly. Its magnitude has to take into account the influence of the in-
creased themal interference between the tube feet and its correlation with the tube feet spacing. In the meantime, con-
cerning an increase in the flow rate, a restriction in flow resistance increase must be taken into consideration. A variable
flow rate design method can be used for relevant adjustment and optimization. In addition, to give full play to the efficacy
of geothermal source heat pumps (GSHP), one should during actual design pay attention to mutual matching of the char-
acteristics of thee factors: i.e. embedded tubes, heat pumps and loads. Key wrods: vertical U-shaped embedded
tube, element energy balance, heat exchange characteristics, geothemal source heat pump (GSHP), numerical simula-

tion

= An Analytic Method Featuring Calcium Balance during a Gas-solid
Calciumbased Desulfuration Reaction [ ., ]/ FAN Bao-guo, XIAO Yun-han, TIAN Wen-dong (Engineering
Thermophysics Research Institute under the Chinese Academy of Sciences, Beijing, China, Post Code: 100080), QI

Haiying (Thermal Energy Engineering Research Institute under the Tsinghua University, Beijing, China, Post Code:
100084)/ / Journal of Engineering for Themal Energy &Power. — 2007, 22 (1). — 101 ~ 104

Based on the total mass conservation principle of calcium element in a desulfurization agent before and after a reaction,
the authors have proposed a novel method for analyzing a calcium-based gas-solid desulfurization reaction-calcium balance
method. Compared with the method for analyzing the desulfurization process purely from the gas-phase side, the calcium
balance method can determine not only the efficiency of the desulfurization system and the utilization rate of the desulfur-
ization agent but also the type of products. Moreover, the difference in the recycling value of the desulfurization products
at different locations can also be identified. The results of an analysis of bed materials under specific operating conditions
for the calcium-based medium-temperature desulfurization process on a circulating fluidized bed (CFB) show that the
desulfurization products mainly consist of calcium sulfate, and calcium sulfite accounts for a very small proportion with a
concurrent generation of a certain amount of calcium carbonate. The transformation rate of the desulfurization agent is
consistent with the conversionrbased transformation rate of values measured at the gas-phase side. Key wrods: calcium

balance method, calcium-based desulfurization agent, CFB medium-temperature desulfurization



