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=Development of Frequency Conversion-based Speed Govern-
ing Technology and Its Application in Electric Power Systems [ , |/ ZHANG Cheng-hui, CHENG Jin, XIA
Dong-wei, et al (Institute of Control Science & Engineering under the Shandong Universitys Jinan, China, Post Code:
250061) //Journal of Engineering for Themal Enewgy &Power. — 2003, 18(5). —439 ~444
An overview of the development history and present status of frequency wnversion-based speed governing technology is
given from the standpoint of the use of eleciric power semiconductors, control technology and main circuit topology struc-
tures, etc. The main control techniques of the above-cited speed governing method are concisely described. An analysis
is given of the development dynamics of high-voltage frequency conversion-based speed governing technology with the
technical features of its several schemes now in use being compared. On the basis of the above the development tendency
of the speed governing technology under discussion is outlined. In conclusion, its application aimed at enegy conserva-
tion, technology and wntrol pedomance enhancement is described. Key words: frequency conversion-based speed gov-

erning technology, vector control, AC motor, PWM (pulse width modification) technology, electric power system

= Simulation Study on the Visualization of One-dimensional Tempera-
ture Profiles in a Pulverized Coal-fired Boiler Furnace [ , ]/ LI Li, JIANG Zhi-wei, LOU Chun, et al (State
Key Laboratory on Coal Combustion under the Huazhong University of Science & Technology, Wuhan, China, Post
Code: 430074) //Journal of Fngineering for Thermal Energy &Power. — 2003, 18(5). —445~449
Infrared themal image devices currently available can only provide accumulative temperature images of a flame during the
monitoring of the latter without the ability to present any infomation concerning the inner temperature distribution of the
flame. Under certain conditions the local combustion pocess specific to a pulverized coal-fired boiler furnace can be ap-
proximated to a one-dimensional object. By using two probes for taking the picture of flane images respectively fiom two
openings on a furnace wall and through the adoption of image processing techniques and radiation transmission principles
a one-dimensional temperature distribution can be reconstructed between the two probes. With espect to two kinds of typ-
ical temperature profile and by the use of two kinds of flame monitoring mode a simulation study for each kind was respec-
tively conducted. The simulation results indicate that a good reproduction effect of the temperature profiles can be
achieved if flame detectors are mounted at an appropriate picture-taking angle, thus testifying to the significant usefulness
of the method poposed by the authors. Key words: pulverized wal combustion, reconstruction of a temperature field,

flame image processing

= One-dimensional Mathematical Model and Relevant Simulation for
Pulverized Coal Combustion in a Boiler Furnace [ , ]/ ZHANG Tengfei, LUO Rui, REN Ting-jin, et al (Ther-
mal Engineering Department, Tsinghua University, Beijing, China, Post Code: 100084) //Journal of Engineering for
Thermal Energy & Power. — 2003, 18(5). —450 ~453
The combustion mechanism of pulverized coal particles was studied with pulverized-coal burning process in the most com-
plex combustion zone of a furnace serving an object of research. On this basis a one-dimensional maciwscopic model fea-
turing pulverized coal combustion along the furnace height was set up to accurately calculate the burn-off rate of the pul-
verized coal in the furnace. Through a rational simplification of the combustion process of volatile matter and coke in the
pulverized coal the model has taken into account the variation of oxygen content during the pulverized-coal combustion.
With the iso-density model of a single pulverized-coal particle combustion serving as a basis an integral process of pulver-
ized coal combustion is reflected through the combustion process of pulverized coal of various particle diameters. Thus, a
formula for calculating the burn-off rate of pulverized coal in a furnace has been developeds meeting the requirements of
real-time simulation computations. The resulis of simulation calculations are analyzed and found to be in good agreement
with measured data and those given in current literature. Key words: pulverized coal combustion, isodensity model,

macroscopic model, real-time simulation

Lagarange = Lagrangian Numerical Simulation of Particle Turbulent



