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neering, Shanghai Jiaotong University, Shanghai, China, Post Code: 200240) [ lournal of Engireering for Thermal Fn-
egy &Power. — 2003, 18(2). 163—165

A numerical simulation was conducted of the particle movement in a fluidized bed with two-dimensional non-uniformly
distributed air. In addition to dealing with a gas-phase field by the use of Euler method a Lagrangian method is employed
to treat a discrete particle field, directly keeping track of each particle in the particle field. The results of simulation in-
dicate that there exists in the fluidized bed with non-unifomly distributed air an inner circulation movement of the parti-
cles. Hence, the mixing characteristics of the particles in the fluidized bed under discussion are superior to those in a
conventional fluidized bed with unifomly distributed air. Key words: non-uniformly distributed air, fluidized bed, dis-

crete element method

= A Model of Finite-length Linear Heat source for the Vertical Em-
bedded Pipe of a Ground-source Heat Pump [ , | | ZENG He-yi, DIAO Nai-ren, FANG Zhao-hong (Research
Ingtitute of Ground-source Heat Pumps under the Shangdong Institute of Architectural Engineering, Jinan, China, Post
Code: 250014) /foumnal of Fngineering for Thermal Energy &Power. — 2003, 18(2). 166—169
Analyses and discussions were conducted of a non-steady heat transfer model for the vertical embedded pipe of a geother-
mal heat exchanger. With the use of a virtual heat source and Green function method obtained is an analytical solution ex-
pression for the non-steady temperature field gererated by a finite-length linear heat source in semi-infinite large media.
By way of cwomparison with a steady-state temperature field solution discussed is the time required for the temperature field
to attain a nominal ”steady state”. Meanwhile, an analysis is perfomed of the temperature field when it has reached a
steady state. In this connection a mistake that appeared in current textbooks was indicated. Two representative steady-
state borehole wall temperatures, i.e., the temperature at the middle of the borehole and the integral mean temperature
along the borehole, are defined. A comparison of the difference between these two temperatures has led to a simplified
calculation fomula, suitable for engineering applications. On the basis of the above analyses discussed further is the im-
pact of the annual imbalance between heating and cooling loads of geothemal heat exchangers on their long-term perfor-

mance. Key words: gound-source heat pump, geothemal heat exchanger, heat conduction, heat transfer model

= Flue-gas Calculation Model Used in the Study of Long-term
Dynamic Characteristics of a Large-sized Boiler|[ ., | /1I Yun-ze, YANG Xian-yong (Department of Thermal Fn-
egy Engineering, Tsinghua University, Beijing, China, Post Code: 100084) Iioumal of Engireering for Themal Ener-
gy &Power. — 2003, 18(2). 170—172
The study of long-term dynamic characteristics of a lage-sized turbogenerator set requires a simplified, accurate and rapid
calculation of flue-gas heat release rate. To eliminate the main deficiency of currently used flue-gas heat release simula-
tion models the authors have deduced fiom Dybosky-Broch formula of lage-sized boiler thermodynamic calculation a new
flue-gas heat release model for the simulation and analysis of dynamic characteristics. Mowrover, through a concise analy-
sis, simplification and deduction obtained was a method for calculating flue-gas outlet temperatures and heat release rates
in a dynamic process for various boiler heat exchange surfaces. The recommended easy-to-use flue-gas calculation model
offers a relatively accurate and simple expression of the variation mechanism of flue gas temperature and heat release rate
of high-temperature gases in the furnace and various gas-pass heat exchange surfaces of a large-sized boiler during a dy-
namic process. The flue-gas calculation model has been used to simulate the dynamic characteristics of a 600MW super-
critical power generation unit with rational and accurate simulation results being obtained. Key words: lage-sized boil-

er; long-tem dynamic characteristics, simulation, flue-gas calculation model

= Numerical Apalysis of Factors Having an Impact cn the Wall Tempera-



