动

文章编号: 1001-2060(1999)03-0202-03

内融式冰盘管融冰放冷动态模型研究

[摘要] 分析了内融式冰盘管融冰放冷过程的动态特性,建 立了相应的数理模型,并利用该模型分析了一放冷过程的性 能变化。该模型可为冰盘管放冷系统的设计和优化提供理 论依据。

关键词 空调蓄冷 冰盘管 融冰放冷 动态模型 中图分类号 TB657.2

1 前言

冰盘管蓄冷是空调工程中常用的一种蓄冷方 式,其原理是由沉浸在充满水的贮槽中的金属或塑 料盘管作为蓄冷介质和载冷剂的换热表面。在蓄冷 装置放冷时,载冷剂(乙二醇溶液)在盘管内循环,向 贮槽中的冰释放热量,使盘管外的冰层由内向外逐 渐融化直至形成水层。

盘管融冰放冷是一个动态变化过程,随着放冷

收稿日期 1999-08-26

本文联系人 方贵银(1963-) 男, 副教授, 230061 合肥市六安路 158 号 224 信箱

³ 结束语

变量表

通过上述分析可见,本文建立的自然循环锅炉 动态数学模型基本上能够正确反映锅炉的整体动态 特性和静态特性,可以用于优化锅炉的设计和预测 变工况时锅炉的主要性能参数;如果配有相应的控 制系统,便可以比较控制方案和控制策略的优劣,进 而优化控制器的设计。

(中国科学技术大学) 方贵银

时间的增加,其水层不断加厚,而盘管外水层的增厚 将影响其换热效率和放冷量,同时也影响盘管内载 冷剂出口温度。为了搞清其变化规律,本文将就其 融冰放冷特性作一探讨,旨在为冰盘管放冷系统的 设计提供理论依据。

稈

图1 冰盘管融冰放冷过程物理模型

2 冰盘管融冰放 冷过程动态模型

如图 1 所示为冰 盘管融冰放冷过程物 理模型。放冷运行 时,载冷剂溶液在盘 管内流过,与盘管外 的水层进行热交换。

融冰过程是一个

 Q_k :空气带入炉膛的能量 M_i 炉膛几何特性参数 B_P :实际参与燃烧的煤粉量 C_y :炉膛烟气比热 P_b :蒸发 区压力 D_{qi} 锅筒出汽量 ρ_b :锅筒饱和水密度 ρ_{hqi} 锅筒 饱和蒸汽密度 H_{bq} 锅筒饱和蒸汽焓 C_j :金属比热 H_{bs} 锅筒饱和水焓 T_b :蒸发区饱和温度 G_y :炉膛烟气流量 V:蒸发区总体积 D_{qpi} :清洗槽凝结水量 M_{yxi} :锅筒及上 升管金属有效质量 V:蒸发区饱和水体积 D_{zi} :锅筒自蒸 发量 D_s 锅筒给水量 D_{pfi} :锅筒排污水量 Q_1 :化学不完 全燃烧损失 Q_2 :排渣损失 M_i 对流环节工质储量 C_{pi} 工质定压比热 M_m :对流环节金属质量 U_i 对流环节内周 长 C_m :对流环节合工质密度 F_i 对流环节流通面积 W_i 对流环节内工质密度 P_{zi} :汽机母管压力

参考文献

- [1] 吕子安. 热工对象建模方法的研究及其应用. 清华大学工学 博士学位论文, 1988.
- [2] 章臣樾. 锅炉动态特性及其数学模型. 水利电力出版社, 1986.

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http (渠wv源cnk编辑)

很复杂的过程,为了简化问题,便于进行数理模型描述,需作以下几点假设;

(1)管内流体(乙二醇溶液)入口温度 Thi恒定;

(2)传热管外壁与固液两相界面之间为同心圆 环;

(3)初始时刻冰处于相变温度 *T*_f,即不考虑冰的显热影响;

(4)由于盘管长度相对于管径较大,因此可认为 轴向导热很小,这时可将多维问题简化为一维(径 向)问题。

当盘管外的冰层融化时,在盘管外表面与两相 界面之间形成一个同心圆环水层,在水层内将发生 自然对流换热,为计算方便,可将水层内的自然对流 换热,为计算方便起见,可将水层内的自然对流换热 转化为当量导热来计算^[1]。

2.1 动态模型建立

° 204 °

2.1.1 单位长度传热系数K

$$K = \frac{\pi}{\frac{1}{\alpha_1 \circ d_1} + \frac{1}{2 \circ \lambda_1} \ln \frac{d_2}{d_1} + \frac{1}{2 \circ \lambda_2} \circ \ln \frac{d_3}{d_2}}$$
(1)

式中:K — 盘管单位长度传热系数, W/(m°K); λ_1 — 盘管管壁导热系数, W/(m°K); λ_2 — 圆环 水层内当量导热系数, W/(m°K); α_1 — 盘管内对 流换热系数, W/(m²°K); d_1 — 盘管内径, m; d_2 — 盘管外径, m; d_3 — 圆环水层外径, m。

(1) 盘管内对流换热系数 $\alpha_1^{[2]}$

由 Dittus-Boelter 公式计算得出:

 $Nu = 0.023 Re^{0.8} Pr^{0.4}$

式中: *Nu* — 努塞尔数; *Re* — 雷诺数; *Pr* — 普 朗特数。

(2)圆环水层内当量导数系数 $\lambda_2^{[1]}$

$$\lambda_2 = 0.386 \lambda_{\rm w} \left[\frac{Pr}{0.861 + Pr} Ra_c^{*} \right]^{\frac{1}{4}}$$
(3)

式中: λ_w —— 水的导热系数, $W/m^{\circ}K_{\circ}$

$$Ra_{c}^{*} = \frac{(\ln \frac{d_{3}}{d_{2}})^{4}}{\delta^{3}[(2d_{3})^{-\frac{3}{5}} + (2d_{2})^{-\frac{3}{5}}]^{5}} Ra_{\lambda}$$
(4)

$$\delta = \frac{d_3 - d_2}{2} \tag{5}$$

$$Ra_{\lambda} = \frac{g\beta \left(T_2 - T_f\right) \delta^3}{\nu \alpha} \tag{6}$$

式中: δ ——圆环水层厚度, m; g——重力加速度, m/s²; β ——水的体积膨胀系数, $^{\bigcirc 1}$; T_2 ——盘管 外壁面温度, $^{\bigcirc}$; T_f ——水的冰点, $^{\bigcirc}$; ν ——水的运 2.1.2 盘管内载冷剂与水层之间传热量 Q 根据能量平衡可得下列关系式:

$$Q = K \circ L \circ \Delta t_{\rm lm} = \dot{m} \circ c \circ (T_{\rm bi} - T_{\rm bo})$$
⁽⁷⁾

式中: Q — 盘管内载冷剂释放的热量, kW; K — 单位长度盘管传热系数, W/(m°K); L — 盘管总 长度, m; Δt_{lm} — 对数平均温差, K; m — 载冷剂 质量流量, kg/s; c — 载冷剂比热, kJ/(kg°°C); T_{bi} — 载冷剂进口温度, °C; T_{bo} — 载冷剂出口温 度, °C。

2.1.3 对数平均温度 Δt_{lm}

$$\Delta t_{\rm lm} = \frac{(T_{\rm bi} - T_{\rm w}) - (T_{\rm bo} - T_{\rm w})}{\ln (T_{\rm bi} - T_{\rm w}) / (T_{\rm bo} - T_{\rm w})}$$
(8)

式中: T_w —— 融冰过程中盘管外圆环内水温, 它近 似于水的冰点, 即 $T_w \doteq T_f = 0^{\circ} C_s$

上式可简化为:
$$\Delta_{t_{\text{Im}}} = \frac{T_{\text{bi}} - T_{\text{bo}}}{\ln T_{\text{bi}}/T_{\text{bo}}}$$
 (8*a*)

$$K \circ L \circ \frac{T_{\rm bo} - T_{\rm bo}}{\ln T_{\rm bi} / T_{\rm bo}} = \dot{m} \circ c (T_{\rm bi} - T_{\rm bo})$$
$$T_{\rm bo} = T_{\rm bi} e^{-K \circ L / m \circ c}$$
(9)

 2. 1. 5 盘管外圆环水层外径 d₃ 与时间 t 的关系 根据能量平衡关系可得:

$$\dot{m} \circ c \circ (T_{\rm bi} - T_{\rm bo}) \circ t = \frac{\pi}{4} (d_3^2 - d_2^2) \circ L \circ \rho \circ h_{\rm i}$$
(10)

式中: t — 融冰时间, s; ρ — 冰的密度, kg/m³; h_i — 冰的融解潜热, kJ/kg。

2.1.6 冰盘管传热有效度 ε

冰盘管实际上也是一种换热器,按照与常规换 热器中定义的传热有效度一样,ε采用下式计算:

$$\varepsilon = \frac{(T_{\rm bi} - T_{\rm bo})}{(T_{\rm bi} - T_{\rm f})} \tag{11}$$

上式为可简化为:
$$\epsilon = 1 - \frac{T_{bo}}{T_{bi}}$$
 (11*a*)
中式(11)还可得到实际放冷量为.

 $Q_{\rm d} = \varepsilon mc \left(T_{\rm bi} - T_{\rm f} \right) = \varepsilon mc T_{\rm bi} \tag{12}$

2.2 模型求解

由于以上各方程中的参数相互耦合,可以采用 迭代方法求解,计算时编制相应的程序,如图2所示 为其计算程序框图。

动粘度, m^2/s , α_{----} 水的执扩散系数, m^2/s , 1994-2017 China Academic Fournal Electronic Publishing House. All rights reserved. http://www.cnki.net

3 模型分析与讨论

利用该模型分析了一冰盘管融冰放冷过程。

工况		А	В	С	D	Е
空一燃比		1. 337	1. 402	1. 186	1. 820	2. 203
水分, %		1. 66	25	25	25	25
温度, ℃		830	790	725	825	750
表观气流速度, m/ s		1. 856	1. 830	1. 553	1. 785	1. 605
流化后的床高, m		0. 21	0. 21	0. 21	0. 21	0. 21
床内颗粒空隙率		0. 55	0. 55	0. 55	0.55	0.55
总燃料 N 转换为 NO 时的 排放浓度. mg/m ³ (6%0 ₂)		1758	1618	2114	1370	1128
挥发分N所占比例,%		50	50	50	50	50
床内焦炭容积份额,%		2.5	2.5	2.5 2.5		2.5
出口氧气浓度,%		7. 60	8. 18	2.05	10. 5	14. 6
气体浓度,%	CO	0. 393	0. 877	5.0	0. 513	0. 294
	H ₂	0. 03	0. 03	0. 02	0. 04	0. 04

4 计算结果和讨论

计算的工况条件与试验一致,NO的计算结果可以同流化床中高水分煤的燃烧试验结果^[13]进行

比较。表3给出了计算的 NO 排放量与实际测量 值,可见两者比较接近。

影响流化床 NO 排放量的因素很多,通过计算 发现煤中的水分、床内的 CO 浓度和空一燃比等都 对于 NO 转换率有较大的影响。高水分煤在流化床 中燃烧时,随着床内水分的增加,由于水煤气反应, 使得 CO 和 H2 的浓度增加。当煤中水分由 1.6% 增加到 25%时,CO 的排放量由 4 913 mg/m³增加 到 10 963 mg/m³,这时计算的 NO 转换率由 15.1% 下降至 12.5%。空一燃比对于 NO 排放量也有较 大影响,由表 2 的后四个工况可见,随着空一燃比的 减少,床内 CO 浓度迅速增加,而 O₂ 浓度很快下降, 当空一燃比由 2.203 (工况 E)减少到 1.186(工况 C)时,计算的 NO 转换率由 20.3%下降至 6.4%。 当然,床温也对 NO 的转换率有一定的影响。

NO 排放量	A	В	С	D	Е
测量值 mg/ m ³ (6%0 ₂)	293. 8	179. 7	114.8	202. 9	255. 1
计算值 mg/ $m^3(6\%0_2)$	265. 5	202. 2	135.4	198. 6	229. 0
测量的 NO 转换率, %	16.7	11. 1	5. 43	14.8	22. 6
计算的 NO 转换率, %	15. 1	12.5	6.40	14. 5	20. 3

表 4 NO 生成和还原反应数值计算的结果

序号 反 应	E ti		累积转换率, %				
	唯 化 初	А	В	С	D	Е	
1	$NO+CO \rightarrow 1/2N_2+CO_2$	焦炭	42 0	50 4	55 (44 1	41 4
2	$NO+Char \rightarrow 1/2N_2+CO$	气体一固体粒子	43. 9	50. 4	33. 6	44. 1	41. 4
3	$NO + 2/3NH_3 \rightarrow 5/6N_2 + H_2O$	均相气体	0. 00	0. 00	0. 00	0. 00	0. 00
4	$NO + H_2 \rightarrow 1/2N_2 + H_2O$	焦炭	0. 003	0. 002	0. 003	0. 002	0. 003
5 $NH_3 + 5/4O_2 \rightarrow NO + 3/2H_2O$	焦炭	9. 0	12.9	12.0	8.6	11. 7	
	均相气体	0. 00	0. 00	0. 00	0. 00	0. 00	
6	$2NH_3 + 3/2O_2 \rightarrow N_2 + 3H_2O_2$	焦炭	41. 0	37. 1	38. 0	41. 4	38. 3

计算还得到了生成 NO 和 NH₃ 的各个反应的 累积速率,表4 给出了对于不同水分(O₂ 浓度约为 8%)、不同空-燃比(煤中水分为 25%)的各个反应 的累积转换率。图2 直观地表达了 NO 生成和还原 反应的转换率。

可以看出,有两个 NO 的还原反应是非常重要的:

$$NO + CO \rightarrow 1/2N_2 + CO_2 \tag{4}$$

$$NO + Char \rightarrow 1/2N_2 + CO$$
 (5)

图 2 NO 生成和还原反应各过程的转换率(对工况 A) ?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnkt.net

N

炉

执

微机控制系统,具有以下功能有:

程

Т

3.1.1 数据采集、处理及显示 装置设有 12 寸绿 色 CRT 显示,可对锅筒水位,蒸汽压力炉膛负压、炉 内各点温度、煤量、汽量、水量、风量、送风风压等实 行模拟流程图显示。改进后,采取了对模拟信号的 限幅措施,从而避免了信号超量程造成的数据紊乱 现象。

3.1.2 控制系统 具有独立的给水调节系统和给 煤、燃烧自动调节系统。微机能完成对给水、给煤、 送风与引风的自动控制,使锅筒水位、蒸汽压力、炉 膛负压、风煤配比系数、烟气含氧量等运行参数,维 持在规定范围,使锅炉处于安全、经济、稳定运行状态,解决了给煤速度信号与微机控制的匹配问题,能 适应我厂生产用汽量变化大的实际情况,满足了生 产要求。

3.1.3 报警 该系统可对水位、蒸汽压力、炉膛温 度、炉膛负压等参数实现上下限越限报警。当运行 参数越限时,声光自动报警。上下限位由操作人员 在线设定、修改。

3.1.4 报表打印 本机配有 80 字符/行的通用并 行打印机,可打印出十几种参数的数据,形成日用 汽、水、煤统计报表,并开发出随机打印运行总图、光 柱显示图、给定测量值显示图等多项功能。

3.1.5 累 计 积算 对汽量、水量、煤量等进行累计 积算,并可对产汽量进行压力校正计算。

3.1.6 手操/自动双向无扰动切换 备有后备操作 装置,能实现直接人工强电操作,提高了微机在生产 中的适用性。

3. 1.7 参数在线修改 在自动工作状态下,对各给 定值、PID 整定参数、配比系数、实时时钟等实现在 线修改,并可在 CRT 画面上显示。

3.1.8 备有 RS232 全双工串行接口,可实现计算 机联网与管理。

3.2 系统硬件

本系统以 Z180MPU 为核心, 主机箱内配有 9104ACPU 板, 9210 高分辨率显示板, 0811 光隔离 A/D 板, 1234 光隔离热电阻 A/D 板, 4302, 4306 光 隔离开关量 I/O 板, 11060 光隔离 D/A 板, 各模板 通过 STD 总线与 CPU 相连,构成完整的工控主机, 系统组成见图 1。

3.3 系统控制原理

工业锅炉本身是一个动态特性比较复杂的对 象,其具有多输入、多输出,参数间相互耦合等特性。

21994-2017 China Academic Journal Electronic Publishing Flouse. All rights reserved. http://www.chki.net