第3卷(6)

盘车与静态剎轴机构的设计

王 运 今

(哈尔滨船舶锅炉涡轮机研究所)

[提要] 本文叙述了在某大型舰艇的主并车齿轮箱的设计中,采用盘车机构与静态 刹轴机构结为一体的新的设计。在盘车机构的传动部分。采用了谐波减速器。 主题词 传动装置 辅助设备 设计

一、引言

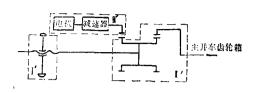
盘车机构用于回转机械的转子的慢速转动,以保证从热态到冷态或从冷态到热态的 变化过程中转子变形均匀(如蒸汽轮机暖机阶段和停机后的冷却阶段)。在维护、保养、 维修过程中, 也经常用盘车来实现各种要求。

在多桨的舰船上,当某一螺旋桨不工作时,用静态刹轴机构将其刹住,以满足维修 转动部件的需要,并防止螺旋桨被航行中的船只拖动而消耗功率。

一般情况下, 盘车和静态刹轴机构都是通过离合器与主齿轮箱相联接, 从而与轴系 及主机相联接。目前所看到的都是两个单独的机构。但有时由于布置困难,主减速箱不 能提供两个合适的位置,用来挂装盘车机构和静态刹轴机构,这时采用盘车与静态刹轴 联合机构就非常必要了。

二、构思设计

某大型舰艇主并车齿轮箱为三机并车齿轮箱。两台燃气轮机通过功率分支双机并车 后,驱动螺旋桨,作为加速机组。另有一台柴油机,通过主并车齿轮箱驱动螺旋桨,用 于巡航工况。主并车齿轮箱具有多个自由端,可供挂装辅助装置。就机构的尺寸、重量 的合理性而言,盘车机构和静态剎轴机构最好布置在主并车齿轮箱的Ⅰ级小齿轮轴的自 由端上,这样可以充分利用主并车齿轮箱的两级减速比,机构的尺寸重量都可小些。


但是,该主并车齿轮箱的两个I级小齿轮轴的自由端布置了离合器,无法再挂装其 它机构。考虑到静态刹轴时的扭矩很大及其它因素,最佳布置方案只有一个Ⅰ级大齿轮 轴的自由端。这样就提出了盘车机构与静态刹轴机构合为一体的要求。

同时,由于近年来谐波减速器的发展,使其应用范围不断扩大,将其用作船用盘车 机构的减速机, 以取代蜗轮蜗杆减速机是完全可行的。

文稿收到日期:1987-12-03;收到修改稿日期:1988-03-26。

1.对盘车机构和静态湖轴机构结为一体的分析

(1) 盘车机构的结构分析 为了便于说明,以现有一艘舰艇的盘车机构为例。盘车

时由电动机驱动,盘车电动机启动前,通 过控制部件移动离合器,使盘车机与主并 车齿轮箱 I 级小齿轮轴自由端上的专用套 齿联接,然后启动电动机,实施轴系或主 机的盘车,这一机构见图1。

图1 盘车机构简化示意图

可将盘车机构示意图分为三个部分。

I′为控制部分,用来控制盘车机构离合器的位置,即盘车运行位置及脱开盘车位置。 I′为离合器部分,用离合器齿轮的轴向位置的改变来实现盘车机构与主并车齿轮箱的 联接或脱开。I′为电动机及减速器部分,是盘车的动力与减速机构。

(2) 静态刹轴机构的分析 仍以该舰艇的静态刹轴机构为例来说明。当实施静态 刹轴时,通过控制手轮来移动离合器齿轮,使其与主并车齿轮箱上另一个 I 级小齿轮轴自 由端的套齿相联接。离合器齿轮的另一端与固定在主并车齿轮箱壳体上的套齿相啮合, 从而实现轴系的静态刹轴。其机构见图2。

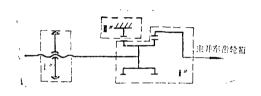


图2 静态刹轴机构简化示意图

该机构也由用虚线框成的三部分组成。 I ″ 为控制部分,用来控制静态刹轴机构离合器的工作或脱开。 I ″ 为离合器部分,通过离合器位置的改变,实现主并车齿轮箱转动件(I级小齿轮轴)与壳体上的套齿的联接或脱开。 I ″ 为固定部分,即固定在主并车齿轮箱壳体上的套齿。

从上述分析看出,盘车机构和静态刹轴机构的 I'与 I''均为控制部分; I'与 I''均为 离合器部分。各部分的功用相同(实际结构不同),动作原理一致。控制部分都是控制 离合器的位置。离合器都是把本机构与主并车齿轮箱相联接或脱开。而 I'与 I''部分则不同,这是实现盘车或静态刹轴的功能部分。

如果把两套机构合为一体,这时的线 图应为四部分组成。如图3。

图中虚线框成的四部分分别为。 I 控制部分,它代替 I '和 I ",用来控制离合器齿轮的位置。 I 离合器部分,离合器齿轮有三个位置,即全脱开位 置;盘 车 位置。离合器齿轮把盘车机构减速器输出轴与主并车齿轮箱 I 级大齿轮轴端的专用套齿联接起来,实施盘车;第三个位置为静

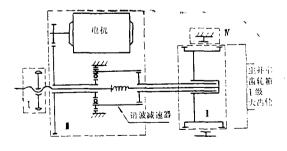


图3 盘车与静态刹轴机构线图

态刹轴位置:离合器齿轮由盘车位置再沿轴向移动一段距离,把固定在主并车齿轮箱壳体上的套齿与主并车齿轮箱 I 级大齿轮轴端的套齿联接起来,实施静态刹轴。 I 电动机及减

速器部分: 盘车的动力与驱动部分。 IV 固定部分: 套齿固定在主并车齿轮箱的壳体上。 这一机构具有盘车和静态刹轴两种功用。

2. 盘车减速器的选择

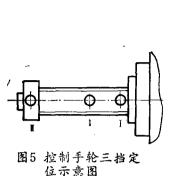
根据盘车机构的特点,要求其减速器应结构简单、外形尺寸小、减速比大、使用可靠。一般选用蜗轮蜗杆减速机构。但谐波减速器也具有上述要求的特点,并优于蜗轮蜗杆减速机构。依有关资料介绍列下表进行比较:

坂 据 目	传动比	级数	输 出 矩	输出转 数	数率%	输入功率 (马力)	齿轮数	 轴承数	外形尺寸 (厘米)	体 积 (厘米°)	重 量(公斤)
· 蜗轮蜗杆机构	108	2	3980	18	40	2.5	4	6	48×36.5×58	101 616	104
谐波减速器	100	1	3980	18	80	1.22	2	2	16×15×15	3600	13.6

从上表可看出, 谐波减速器与蜗轮蜗杆减速机构, 在其传动比、输出扭矩、输出转数等主要参数相同或相近的情况下, 谐波减速器在重量、尺寸等方面均优越于蜗轮蜗杆减速机构。

谐波传动是一种新型的传动方式,由波发生器产生的机械波,通过柔轮的径向变形 而产生与刚轮的相对移动,从而实现变速并传递扭矩。其特点是:

- (1) 同时啮合的齿数多,在双波传动中,两个啮合区有50%的齿同时啮合。
- (2) 承载能力高,由于同时啮合的齿裂之。所以齿的应力相应减小。
- (3)传动比大且范围宽。谐波传动可以采用不同的结构,大致可在35~10⁷之间进行有级减速或增速。
 - (4) 结构简单, 传动机构主要由刚轮、柔轮、波发生器三大元件组成。
 - (5)线速度低, 齿的磨损均匀。在传动中齿的啮入和啮出速度都很低。
 - (6)运转平稳无冲击,齿的啮入和啮出随波形逐渐变化。
- (7)传动效率高。谐波传动依靠磨擦滑移而运动,采用适当的结构,根据制造的 光洁度和润滑条件不同,效率可达69~96%。


谐波传动装置的损坏主要是柔轮开裂。其原因是经过长期的交变应力,在齿根部产生疲劳破坏。关键问题是柔轮的选材和加工工艺,只要选材合适、工艺上采取有效的措施,如齿根修光等,提高其加工精度和表面光洁度,热处理得当,即可大大提高柔轮的寿命。

目前,谐波传动在大型绞盘、起重设备中,在矿山、运输、国防工程、机床、轧钢 及纺织设备中都有应用。根据我国的生产和使用情况,选择谐波减速器为该主并车齿轮 箱的盘车机构减速器是可行的,完全能满足使用要求。

三、结构设计

盘车与静态刹轴机构的结构如图4所示,具体说明如下:

1.控制部分 由手轮、螺杆、螺母等零件组成。通过转动手轮,由螺杆带动联轴器前后移动,实现联轴器各位置的控制。

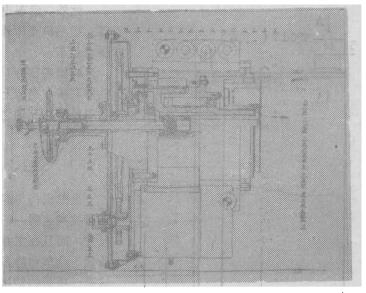
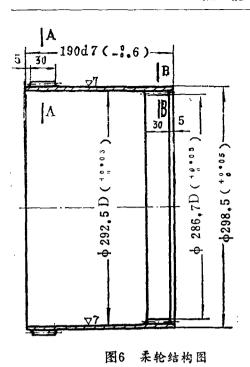


图4 盘车与静态剂轴机构结构图

控制手轮外部的螺杆轴上设有三个销孔,分别限定三个位置,如图5。

销 I 为全脱开位置,即联轴器处于脱开状态。拿开销 I ,通过转动手轮向主并车齿轮箱推进联轴器至销 I 位置,则为实施盘车位置。这时联轴器与主并车齿轮箱 I 级大齿轮轴端专用套齿啮合。销 I 平时锁紧并应铅封,接到静态刹轴指令后,取下铅封,通过转动手轮推进联轴器进入静态刹轴位置。这时联轴器将壳体上的专用套齿与主并车齿轮箱 I 级大齿轮轴端的专用套齿联接起来,销 I 靠到手轮的端面上。

- 2.联轴器部分 联轴器由内花键齿与谐波减速器输出轴的外花键齿联接,并可在外花键齿上沿轴向前后滑动。当旋转控制手轮,使联轴器外齿前部与主并车齿轮箱 I 级大齿轮轴端部专用套齿联接时,则由盘车电动机通过减速部分,联轴器,然后输入主并车齿轮箱,实现盘车。继续旋转控制手轮,联轴器滑动至其后半部外齿与壳体上的固定专用套齿联接,这时轴系通过主并车齿轮箱与固定套齿联接,实现静态刹轴。
- **3.减速器部分** 盘车机构减速器部分包括减速比为3.5的一级外传动及减速比为300的谐波传动。主并车齿轮箱的第 I 级减速比为7.1,这样,盘车传动比则为:


电动机输出为1500r/min,轴系则以0.201r/min盘车转动。

外传动为一对直齿圆柱齿轮。

谐波减速器采取波发生器输入,柔轮输出,刚轮固定的结构。刚轮用铰制螺栓固定 在谐波减速器的壳体上。

采用分体式筒形柔轮(见图6),这样可改善柔轮加工的工艺性。

采用滚动式积极控制式波发生器。这种波发生器能使柔轮与刚轮的啮合达到理想状态,承载能力高,柔轮的应力分布均匀,运动平稳效率高。具体结构为凸轮外缘加套薄壁轴承。

此外,盘车电动机的转子轴端为方头,且 露在电动机壳体外部,可安装手摇把,以实施 手动盘车。

4.固定部分 固定部分为套齿,将其用圆柱销联接在壳体上。另外,燃气轮机、柴油机、盘车及静态刹轴之间应连锁。

四、结束语

盘车机构与静态刹轴机构结为一体,并采 用谐波减速器,不仅简化了结构,减小了重量 尺寸,而且在主并车齿轮箱端部只需占用一个 位置。盘车和静态刹轴的功能可满足要求。但 这是一项新的结构设计,尚有待于进一步考验 与完善。

参考 文献

- (1) 上海市纺织科学研究院:谐波传动。1972年8月
- 〔2〕 张振荣等:谐波传动减速机在动力传动中的应用。第一重型机器厂, 1986年7月

Design of a Spinning and Stationary-State Shaft-Braking mechanism

Wang Yunling

(Harbin Marine Boiler & Turbine Research Institute)

Abstract

This paper presents a new structure combining the spinning mechanism with the stationary-state shaft-braking mechanism used in the design of the main combining gear box for a major vessel. A harmonic speed-reduction device is used in the transmission part of the spinning mechanism.

Key words: power transmission gear, auxiliary equipment, design