2017, 32(12):14-20.
摘要:
针对微分进化(Differential Evolution,DE)算法应用于换热网络优化存在局部搜索能力不足、收敛速度慢和求解精度低等问题,提出一种混合微分进化(Hybrid Differential Evolution,HDE)算法。当DE算法的变异、交叉和选择操作不再使种群的最优值继续进化时,加入梯度操作使当前种群的最优个体趋向更好的解。为了防止算法早熟收敛,当种群的多样性低于设定的阈值时,引入迁移操作,在最优个体附近区域重新生成新的个体并以此替换旧的个体,增强算法的种群多样性。通过算例验证了该算法可以有效适用于换热网络的优化过程,具有更强的局部搜索能力,更快的收敛速度和更高的优化效率。