[关键词]
[摘要]
针对航空发动机动态特性的建模问题,提出一种基于麻雀搜索算法(SSA)优化NARX神经网络的动态特性参数辨识方法。利用SSA对NARX网络的权值与偏置进行迭代寻优,使网络具备更高的准确度与泛化能力;利用优化后的NARX网络进行动态参数辨识;使用航空发动机飞行测试数据集进行了仿真测试。结果表明:SSANARX方法明显优于NARX和PSONARX方法。SSANARX方法的输出参数N1,N2和排气温度(EGT)与真实值的最大相对误差绝对值δmax分别降低至3.81%,1.24%和3.47%;动态特性指标Ti与Tt与真实值的相对误差均小于5%;经10次交叉试验,参数N1,N2和EGT的测试结果均方根误差均值RMSEm分别为0.29,0.18和1.50。模型的准确性、实时性与稳健性均满足了仿真需求。
[Key word]
[Abstract]
A dynamic characteristic parameter identification method based on the sparrow search algorithm (SSA) and nonlinear autoregressive exogenous (NARX) neural network was proposed for the aeroengine dynamic characteristics modeling. SSA was used to optimize the weights and biases of the NARX network iteratively to enhance its accuracy and generalization capability; the optimized NARX network was used for identifying dynamic characteristic parameters; simulation tests were conducted using flight test dataset. The results show that SSANARX method is better than the NARX and PSONARX methods obviously. By the SSANARX method, the maximum relative error absolute valuesδmaxbetween the output parameters N1, N2 and exhaust gas temperature (EGT) and actual values are reduced to 3.81%, 1.24% and 3.47% respectively; the relative errors between the dynamic characteristic indicators Ti and Tt and actual values are less than 5%;through ten cross tests, the mean values of root mean square errors (RMSEm)
[中图分类号]
TK231
[基金项目]
国家自然科学基金面上项目(12072196)