文章编号:1001-2060(2015)02-0277-05

微量溶解氧传感器结构研究

(海军驻上海地区舰艇设计研究军事代表室,上海 200011)

摘 要: 空气中的分子态氧溶解在水中即为溶解氧,是表征 水体自净能力和水质监测的重要指标之一,本研究主要介绍 了两电极溶解氧传感器的制作过程。对于两电极溶解氧传 感器的研制主要包括工作电极、辅助电极和透氧膜的结构、 性能的研究。通过实验发现:工作电极的表面积、辅助电极 的纯度和表面积会影响传感器测试性能,透氧膜的厚度会影 响电极反应速度。由此得出工作电极直径应在 5-6 mm 之 间 辅助电极选用纯银材料,表面积 2 200 (mm)²左右,选择 性透氧膜选用聚四氟乙烯材料,厚度 15-25 μm 之间。

关键词:溶解氧;传感器;电极;透氧膜
 中图分类号:TB94 文献标识码: A
 DOI:10.16146/j.cnki.rndlgc.2015.02.026
 引言

空气中的分子态氧溶解在水中即为溶解氧 (DO,Dissolved Oxygen),水中溶解氧的含量与空气 中氧的分压和水的密度有关。溶解氧值是水质监测 的指标之一,也是水体自净能力的重要条件。准确、 方便、快速地测量水中的溶解氧含量对环境监测、工 业和农业生产均具有重要意义。

现在利用电化学和电子科学结合的方法,出现 了各种测量溶解氧的方法和仪器。常用的检测方法 有碘量法、电流法、荧光法。电流法即 Clark 溶解氧 电极法 相比于其它两种方法,操作简单,在测量过 程中受到的干扰少,可实现连续快速的在线检测。

本研究在分析溶解氧检测的基本原理之后,设 计制作了一款两电极型极谱式溶解氧传感器,主要 包括研究电极、辅助电极和透氧膜。针对传感器的 研究电极和辅助电极,分别介绍了二者的制作过程。 通过实验,研究发现当传感器研究电极和辅助电极 的表面积及制作材料发生变化时,对传感器性能有 很大影响,同时研究了不同厚度透氧膜的选取对溶 解氧检测的影响。结合实验结果,设计传感器的 参数。 1 电极法测量溶解氧的工作原理

两电极型溶解氧传感器也叫扩散型溶解氧传感器,包括两个金属电极,即研究电极和辅助电极,表面覆有选择性透氧膜。研究电极为传感器的阴极, 一般采用铂或金等材料制作成;辅助电极为传感器 的阳极,采用银或铅等材料制作成。两电极型溶解 氧传感器的结构如图1所示。

图1 两电极溶解氧传感器结构示意图

研究电极、辅助电极和待测溶液构成的基本的 电化学体系,体系把反应物质传输到电极表面主要 有3种方式:对流、电迁移和扩散。当在研究电极和 辅助电极之间加上恒定的极化电压时,待测溶液中 的氧分子就会通过选择性透氧膜,连续扩散到研究 电极的表面和电解液中,此时这些氧分子就会被还 原成负二价的氧,这个过程将产生扩散电流,其大小 与扩散到研究电极表面的氧分子成正比。反应过程 可以用化学方程式表示为:

金阴极: $O_2 + 2H_2O + 4e \rightarrow 4OH^-$ 银阳极: $4Ag + 4Cl^- \rightarrow 4AgCl + 4e$ 总反应: $O_2 + 2H_2O + 4Ag + 4Cl^- \rightarrow 4AgCl$ + $4OH^-$

收稿日期: 2014-08-20; 修订日期: 2014-09-30

作者简介:杨卫国(1976-),男、江苏南通人、海军驻上海地区舰艇设计研究军事代表室工程师.

杨卫国

2 传感器的结构设计

2.1 工作电极

由于金的催化活性高,不易被氧化且不溶解于 电解液,故选取金作为工作电极的材料。为实现通 过透氧膜的氧分子能在金电极表面发生完全反应, 需对金电极采取一种特殊的制作方法。

首先 将选择一小段圆柱体金料 使用聚四氟乙 烯材料作为电极套 ,然后在金柱体的表面涂薄薄一 层环氧树脂密封胶 ,再将金柱体置入电极套的孔中 , 待环氧树脂密封胶充分固化之后即可制得金电极。 由于环氧树脂密封胶在高温和低温条件下仍可以保 持抗化学腐蚀和高绝缘性能 ,因此使用环氧树脂将 金柱体固定在电极套的孔中 ,防止了金电极的渗漏 现象 ,电极套用来保护密封胶膜。

将做成的金电极的端面打磨成圆弧状,如图2 所示。如果电极表面粘附了杂质,将出现非目的性 的电流,例如负电流,造成实验测量误差,因此工作 电极表面应该是打磨光亮且要保持清洁。另外,传 感器工作电极经过长期使用后,表面会受到污染,会 减缓响应速度,测量微量氧时造成结果不准确,因此 必须经常对工作电极进行清洗再生。

图 2 工作电极实物图 Fig. 2 Chart showing the real object of the electrode being studied

2.2 辅助电极

辅助电极与电解液和工作电极串联为一个测量 通路,电流通过辅助电极和电解液到达工作电极表 面,保证扩散到工作电极表面的溶解氧发生电化学 反应,产生扩散电流。为保证工作电极能够被充分 极化 辅助电极的面积应比工作电极面积更大。

根据传感器对辅助电极特性的要求,采用阻值 小的银丝制作辅助电极。首先取一段直径1 mm、长 度合适的银丝,用砂纸打磨至电极表面光亮,除去银 丝表面的氧化层;然后将电极浸泡在氨水中约1 h, 清洗干燥后用绕线器将银丝绕制成螺旋状。

传感器长期工作后,特别是经常测量含氧量高的水样时,辅助电极会参与电化学反应而生成黑色 AgCl,造成电极反应速度过慢,所以需定期检查和维护辅助电极。

2.3 透氧膜

透氧膜覆盖在工作电极表面,成功将被测样品 溶液和电解液隔离开。膜的选取会直接影响到电极 的响应速度,需选择氧分子透过性强且不透过水分 子的材料,同时溶解氧传感器需要耐温50℃左右, 因此膜材料一般选用聚特氟龙、聚氯丙烯、聚乙烯、 聚丙烯等,厚度一般在0.01 – 0.05 mm 的范围,透 氧膜越薄,灵敏度越高;透氧膜越厚,韧性越好。

3 传感器性能测试

3.1 研究电极的性能实验

氧分子是在工作电极表面进行电化学反应的, 扩散电流与工作电极表面积有关。传感器的工作电 极和辅助电极加上极化电压时,样品中的溶解氧发 生电化学反应,回路中产生扩散电流。电极的反应 速度与一定时间内电极在无氧条件的电流值有很大 关系。

在 25 ℃环境温度下,取表面积分别为 7.85 (mm)²和9.42 (mm)²的两只金电极作为工作电极, 辅助电极采用银丝,采用 20 μm 厚的聚四氟乙烯材 料作为透氧膜,制作两套传感器探头。无氧水可以 利用 5 g 无水亚硫酸钠溶解在 100 mL 的去离子水 中得到。

在辅助电极和工作电极上加 0.68 V 的极化电 压极化 2 h,分别测量传感器在无氧条件下 30 min 内的电流平均值和 6 h 内的残余电流平均值,结果 如图 3、图 4 所示。

由图 3 可以看出,将两种传感器置入无氧水中 后 经过相同时间,表面积为 7.85 (mm)²的工作电 极组装的传感器的电流平均值均比表面积为 9.42 (mm)²的电流平均值小。在无氧条件下传感器在 30 min 时的电流值越低,越容易反映出无氧条件下 的值,但此时后续电路处理时精度就越达不到;反之 当电流值越高,越不容易反映出无氧条件下的值,但 是后续电路处理时精度就越高。表面积为9.42 (mm)²的金电极,虽然无氧下的电流值大,但是反应 速度却不理想。由图4发现,表面积为7.85(mm)² 的残余电流要比表面积为9.42(mm)²的残余电流 小。残余电流虽然很小,但是在微量测量时仍不能 忽略,特别是当传感器长期工作时,残余电流的影响 就会越来越大。出现残余电流的原因是多方面的, 工作电极材料的纯度,表面积的大小和表面上的杂 质都可能引起残余电流。

Fig. 3 Electrical current value of the electrode being studied with various surface areas under the condition of being in the absence of oxygen

在工作电极和辅助电极上加 0.68 V 的极化电 压 测量传感器在空气中 5 min 内的电流值 ,所得数 据如图 5 所示。

由图 5 可以发现 经过相同的时间时,工作电极 表面积越大的传感器在饱和氧条件下电流值也就越 大 经过 5 min ,两传感器都能达到稳定。两者在饱 和氧条件下电流值在后续电路系统进行处理时精度 都可以达到。

以上3个实验表明:工作电极的表面积过大或 过小均不利于溶解氧测量。当表面积越大残余电流 越大;表面积越小时无氧下的电流值越小,越不容易 处理。综合以上因素,应采用直径5-6 mm的金柱 体作为工作电极,表面制成圆弧型。电极覆盖上透 氧膜后,二者之间形成薄而均匀的电解液膜层,形成 电荷输送通道。

Fig. 4 Residual current value of the electrode being studied with various surface areas under the condition of being in absence of oxygen

图 5 不同表面积的工作电极在饱和 氧条件下的电流值

Fig. 5 Residual current value of the electrode being studied with various surface areas under the condition of oxygen saturation

3.2 辅助电极的性能实验

确定工作电极后,辅助电极的纯度对传感器测 量精度的也有影响。选用纯度分别为17%、20%和 80%的银丝绕制辅助电极。同样在辅助电极和工作 电极上加0.68 V的极化电压极化2h,然后分别测 量传感器在无氧条件下 30 min 内的电流平均值和 传感器在饱和氧条件下 5 min 内的电流平均值,所 得数据如表1、表2所示。

表1 不同纯度的辅助电极在无氧下的电流平均值

Tab. 1 Average current value of the auxiliary electrode at various purities under the condition of being

in the absence of oxygen

时间	17%的银丝电	20%的银丝电	80%的银丝电
/min	流平均值/μA	流平均值/μA	流平均值/μA
5	0.0413	0.0417	0.0278
10	0.0280	0.0248	0.0141
15	0.0225	0.0198	0.0116
20	0.0197	0.0172	0.0103
25	0.0182	0.0157	0.0094
30	0.0165	0.0150	0.0087

表 2 不同纯度的辅助电极在饱和氧下的电流平均值

Tab. 2 Average current value of the auxiliary electrode at various purities under the condition of oxygen saturation

时间	17%的银丝电	20%的银丝电	80%的银丝电
/min	流平均值/μA	流平均值/μA	流平均值/μA
1	10.375	10.420	10.415
2	10.560	10.600	10.645
3	10.655	10.690	10.685
4	10.665	10.695	10.695
5	10.660	10.690	10.705

由表 1 可以发现,当传感器置入无氧水中 5 min 时 纯度分别为 17%、20% 和 80% 的银丝的平均电流 值分别为 0.04130、0.04165 和 0.027 75 μ A。经过相 同的时间 辅助电极的纯度越高,电流值下降的越快。 同样 经过 30 min ,用纯度为 80% 的银丝做成的辅助 电极组装的传感器的辅助电极的平均电流值要比纯 度为 20% 和 纯度为 17% 的 平均 电 流值 分别 小 0.007 75 μ A和 0.006 25 μ A ,说明辅助电极的纯度对 无氧条件下的电流值影响较大,辅助电极的纯度越 高,无氧条件下的电流越小。

而由表 2 的数据分析,不同纯度的银辅助电极 在饱和氧条件下的电流值进行对比试验发现,经过 相同的时间时,由不同纯度的银辅助电极组合而成 的传感器在饱和氧条件下电流值基本不变,经过 5 min,传感器都能达到稳定。

通过以上两个试验,可以得出辅助电极的纯度 对饱和氧电流值基本无影响,但对无氧值影响很大, 辅助电极的纯度越高,无氧条件下的电流值越小。 根据溶解氧传感器的原理反应方程式,考虑到辅助 电极发生腐蚀反应,为了延长辅助电极的寿命,采取 纯度为100%的银丝制作辅助电极。

工作电极的表面积会影响测量结果,同样辅助 电极表面积也会影响传感器性能。在25 ℃的环境 温度下,选择纯度为100%、表面积为314、942、 1570和2200(mm)²的4种银丝绕制成螺旋形作为 辅助电极 极化2h,分别测量传感器在无氧条件下 30 min 内的电流值,如表3所示。

表 3 不同表面积的辅助电极在无氧下的电流平均值

Γab. 3 Average current value the auxiliary electrode
at various purities under the condition of being
in the absence of oxygen

时间	314 (mm) ²	942 (mm) ²	1 570 (mm) 2	$2 \ 200 \ \mathrm{mm}^2$
/min	电流值/μA	电流值/μA	电流值/μA	电流值/μA
5	0.0366	0.0293	0.0244	0.0227
10	0.0304	0.0249	0.0178	0.0119
15	0.0251	0.0212	0.0149	0.0102
20	0.0215	0.0174	0.0116	0.0084
25	0.0176	0.0135	0.0089	0.0065
30	0.0136	0.0101	0.0071	0.0051

由上表得出,当传感器置入无氧水中时,经过时间相同时,辅助电极的表面积越大,电流值下降的越快,说明辅助电极的表面积越大,消耗掉传感器腔体中的氧的速度越快。

3.3 透氧膜的性能试验

由于极谱式溶解氧传感器需要一层只允许气体 通过的选择性透氧膜,透氧膜的厚度对无氧条件下 传感器的电流值有很大的影响,它的选取是传感器 性能的关键。

本研究所采用的选择性透氧膜是一种特殊的聚 四氟乙烯材料。制作透氧膜厚度为 15、20 和 30 μm 的传感器,测量在无氧条件下 30 min 内的电流值, 结果如表4 所示。

由表 4 可以看出,对于不同厚度的透氧膜,膜越 薄,透氧率越高,30 min 时的电流值越大,但是传感 器稳定性越容易受到样品流速的干扰;透氧膜越厚, 透氧率越低,30 min 时的电流值越小。由于溶解氧 传感器需要工作在一些特殊环境中,例如在一些污 水处理厂的曝气池和电厂排出的高温冷却水等条件 下,要求对传感器透氧膜的厚度和韧性综合考虑,透 氧膜薄韧性就差,传感器使用时间短和后期保养频 繁; 透氧膜厚, 韧性好,使用时间长,但是灵敏度下降。综合考虑,一般应选用15-25 μm 厚的聚四氟 乙烯作为所开发传感器的选择性透氧膜。

表4 不同厚度的透氧膜在无氧条件下的平均电流值

Tab. 4 Average current value of the oxygen penetration membrane with various thicknesses under the condition of being in the absence of oxygen

时间 /min	15 μm 的电 流值/μA	20 μm 的电 流值/μA	30 μm 的电 流值/μA
5	10.375	10.420	10.415
10	10.560	10.600	10.645
15	10.655	10.690	10.685
20	10.665	10.695	10.695
25	10.660	10.690	10.705
30	10.375	10.420	10.415

4 结 论

本研究设计了一款两电极溶解氧传感器,主要 介绍其工作电极、辅助电极和选择性透氧膜的制作。 工作电极选择金材料,辅助电极选用纯银材料,透氧 膜选用聚四氟乙烯乙烯材料。

通过实验发现,工作电极、辅助电极和透氧膜对 传感器性能有重要影响。工作电极的表面直径应在 5-6 mm 之间,过大会造成残余电流越大,过小会使 无氧下的电流值越小,不容易处理;辅助电极的纯度 越高,无氧条件下的电流值越小,故应选取纯度为 100%的银丝制作辅助电极,同时表面积越大,消耗 掉传感器腔体中的氧的速度越快;透氧膜的薄厚会 影响透氧速率及膜韧性,膜厚一般在 15 – 25 μm 之间。

参考文献:

- [1] 傅 洁,陈 娟,殷华宇. 便携式微量溶解氧检测仪的研制
 [J]. 电子测量技术 2013 36(2):64-67.
 FU Jie ,CHEN Juan ,YIN Hua-yu. Development of a portable trace dissolved oxygen detector [J]. Electronic Measurement Technology 2013 36(2):64-67.
- [2] D. J. Hydes ,M. C. Hartman ,J. Kaiser ,J. M. Campbell. Measurement of Dissolved Oxygen Using Optodes in a Ferry Box System [J]. Estuarine ,Coastal and Shelf Science 2009 83:485 – 490.
- [3] 邱发强 祁 欣. 溶解氧检测及传感技术的研究[D]. 北京: 北 京化工大学 2012.

QIU Fa-qiang ,QI Xin. Dissolved oxygen testing and study of the sensing technology [D]. Beijing: Beijing University of Chemical Technology 2012.

[4] 尚景玉,唐玉宏.溶解氧传感器研究进展[J]. MEMS 与传感器 2014 51(3):168-175.

SHANG Jing-yu ,TANG Yu-hong. Latest research findings in the study of dissolved oxygen sensors [J]. MEMS and Sensors ,2014 , 51(3):168-175.

- [5] YoshioUtaka , Yutaka Tasaki , Shixue Wang , Toru Ishiji , Shoich Uchikoshi. Method of Measuring Oxygen Diffusivity in Microporous Media [J]. International Journal of Heat and Mass Transfer 2009 52: 3685 – 3692.
- [6] 刘 彬,刘咏松,金庆辉.溶解氧传感器微电极的制作及测试[D].浙江:浙江理工大学 2012.

LIU Bin ,LIU Yong-song ,JIN Qing-hui. Fabrication and testing of the microelectrode of a dissolved oxygen sensor [D]. Zhejiang: Zhejiang University of Science and Technology 2012.

[7] 朱亚明,丁为民.一种在线检测溶解氧的方法[J]. 电子测量技 术 2009 32(7):122-124.
ZHU Ya-ming, DING Wei-min. A method for on-line measuring dissolved oxygen [J]. Electronic Measurement Technology ,2009, 32(7):122-124.

(丛 敏 编辑)

tion dispatch

基于数字化软件系统的离心泵叶轮水力设计及性能对比分析 = Hydraulic Design of the Impeller of a Centrifugal Pump Based on a Digitalization Software System and Performance Contrast and Analysis [刊 ,汉] JIN Yong-xin SONG Wen-wu ,XU Yao-gang (College of Energy Source and Power Engineering ,West China University ,Chengdu ,China ,Post Code: 610039) //Journal of Engineering for Thermal Energy & Power. - 2015 ,30(2). - 272 - 276

To design and develop best quality centrifugal impellers proposed was a digitalization system established by using the digitalization software CFturbo Ansys-CFX and UG to conduct a hydraulic design and development of impellers for centrifugal pumps thus forming a new method for designing and developing impellers for centrifugal pumps. To verify the performance of the centrifugal impellers thus designed the authors conducted a contrast and analysis of the impellers designed by using the new method with that of impellers designed by using the traditional method and fully understood the characteristics of the impellers designed by using both methods further judging the feasibility of the new method. **Key Words**: digitalized design hydraulic design centrifugal impeller performance contrast and analysis

微量溶解氧传感器结构的研究 = Study of the Structure of a Trace Dissolved Oxygen Sensor [刊,汉]YANG Wei-guo (Military Representative Office of the Naval Forces of Chinese PLA Resident in Shanghai Region Responsible for Naval Vessel Design and Research ,Shanghai ,China ,Post Code: 200011) //Journal of Engineering for Thermal Energy & Power. - 2015 ,30(2). - 277 - 281

Molecule-state oxygen in air becomes dissolved oxygen when it is dissolved in water and constitutes one of indexes for monitoring water quality representing an important index indicating the self-purification ability of a body of water. The authors mainly described the fabrication process of a dual-electrode dissolved oxygen sensor. The development of a dual-electrode dissolved oxygen sensor mainly includes the study of the structure and performance of working electrodes auxiliary electrodes and oxygen penetration membrane. It has been found during the tests that the surface area of the electrode under investigation apurity and surface area of the auxiliary electrode may influence the performance of the sensor being tested and the thickness of the oxygen penetration membrane may affect the reaction speed on the electrodes. From this one can arrive at a conclusion that the diameter of the working electrode should be between 5 and 6 mm. The auxiliary electrode should choose pure silver materials with their surface area being a-round 2 200 mm². The selective oxygen penetration membrane should choose polytetrafluoroethylene material with the thickness being between 15 μ m and 25 μ m. **Key Words**: dissolved oxygen sensor sensor selectrode soxygen penetration membrane

糠醛渣流化床燃烧污染物排放特性试验研究 = Experimental Study of the Pollutant Emissions Characteristics of Furfural Residue During Its Combustion in a Fluidized Bed [刊 汉]LI Hao-yu ,LI Shi-yuan ,XU Mingxin (Engineering Thermophysics Research Institute ,Chinese Academy of Sciences ,Beijing ,China ,Post Code: 100190) //Journal of Engineering for Thermal Energy & Power. -2015 30(2). -292 - 286

On a small-scale bubbling fluidized bed test rig α combustion experiment was conducted of furfural reside to study the law governing the influence of the bed temperature and excess air coefficient on SO₂ N₂O ,NO and HCl emissions. It has been found that in the range of the bed temperature (700 – 900 °C) being tested ,the emission mass concentration of SO₂ is relatively high and its maximal value is about 625. 8 mg/m³. With an increase of the bed temperature ,the N₂O emissions can be down effectively ,however ,in the meantime ,an increase of the NO emissions may result. The SO₂ emissions will assume a variation tendency of first decrease and then increase. When the bed temperature exceeds 800 °C ,the SO₂ emissions will increase relatively quickly however ,the HCl emissions will assume a variation tendency of first increase and then decrease and when the bed temperature reaches 750 °C ,the HCl emissions arrives at its maximum value. With an increase of the excess air coefficient ,the SO₂ emissions will increase ,however ,the HCl and N₂O emissions will basically keep unchanged. **Key Words**: furfural residue ,fluidized bed combustion ,pollutant emissions

压水堆核电厂安全壳喷淋环管水锤效应的分析 = Analysis of the Water Hammer Effect of the Sprinkling Annular Tube in the Containment Dome of a Pressurized Water Reactor In a Nuclear Power Plant [刊 ,汉] ZHAO Dan-ni ,YANG Peng ,LI Juan ,LIU Yu (Reactor and Safety Analysis Department ,Center for Nuclear and Radiation Safety ,Ministry of Environmental Protection ,Beijing ,China ,Post Code: 100082) //Journal of Engineering for Thermal Energy & Power. -2015 ,30(2). -287 - 290

A method for evaluating the water hammer effect in the sprinkling system of a pressurized water reactor nuclear power plant was described and with the sprinkling system in an improved type (M310) nuclear power plant in China in