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cing the heat exchange of the nanoHluid. With the enhancement of Brownian movement the energy transfer inside
the nano-{luid will also enhance thus intensifying the heat exchange. Key Words: nanofluid intensified heat ex—

change numerical simulation Brownian movement

\Y = Numerical Simulation of the Flow and Heat Trans—
fer in a Straight Channel Installed Inside With V-shaped Ribs ZHANG Ai-ping Bl Shuai FU Lei
( College of Energy Source and Power Northeast University of Electric Power Jilin China Post Code: 132012) //

Journal of Engineering for Thermal Energy & Power. —2015 30(2) . -205 -211

By using the structuralized hexahedral meshes and the K- turbulent flow model the authors sought the solutions to
the 3-D N-S equation the authors sought the solutions to the N-S equation and conducted a numerical simulation of
the flow and heat exchange characteristics in a direct cooling channel installed inside with V-shaped flow disturb—
ance ribs at various flow guide angles o when the Reynolds number at the inlet is 20000. On this basis the influence
of the flow guide angle of ribs o on the heat exchange efficiency and flow losses on the wall surfaces between ribs
was analyzed and a comprehensive optimization search was conducted. It has been found that the overall heat ex—
change efficiency and comprehensive cooling efficiency of the direct cooling channel with ribs assume a similar func—
tion relationship with the flow guide angle o. When « is 47.25 degrees the overall heat exchange efficiency of the
channel is highest and when o is 31. 57 degrees the comprehensive cooling efficiency of the channel is optimal and
when « is 30 degrees the flow losses in the channel are largest. Key Words: gas turbine inner cooling channel V-

shaped rib whole-body optimization search

= Design of a Multiple Tube Bubble Pump LU Yinzhe LIU Dao-ping XU Huang-
dong ( Refrigeration Research Institute Shanghai University of Science and Technology Shanghai China Post

Code: 200093) //Journal of Engineering for Thermal Energy & Power. —2015 30(2) . -212 -217

Based on the currently-available experimental and theoretical study of bubble pumps the authors conducted a ther—
modynamic calculation. When the tube of a single tube bubble pump is chosen with its maximal diameter being 31
mm its lifting flow rate is 39.23 g/s. When the amount of the cooling energy consumed by a whole single pressure
absorption type refrigeration system is chosen as 3 kW to obtain an even larger lifting flow rate inside the tube of the

bubble pump the corresponding total flow rate inside the bubble pump will be 42.3 g/s. By using a multiple tube



