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0.33 w, =0.25, 13
33%: COP 3.5;
0. 89; 0.55 /W,
0.25 /W,
2
Tab. 2 The results obtained from the
single-objective optimization
2
Fig.2 Cooling and heating load distribution / 646 676
of the hotel in a whole year /G 61 333 86 728
/tea™! 3585 6 601
3.2
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! 3 .
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Fig. 3 Results of the comprehensive performance

index obtained from the optimization
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ture at the outlet 9.6% . Key Words: gas turbine swirler NO, numerical simulation

= Study of the Applications of the Method for Evaluating the
Comprehensive Performance of a Trigeneration System /SUN Peng YOU Shijun ZHANG Huan
( College of Environment Science and Engineering Tianjin University Tianjin China Post Code: 300072) LI Xu
( China Northwest Architecture Design Research Institute Co. Ltd. Xi’an China Post Code: 710018) //Journal of

Engineering for Thermal Energy & Power. —2015 30(2) . - 187 - 192

In the light of the problem that the influence of dynamic loads are currently ignored during the design of a gas cool-
ing heating and power trigeneration system and excessively large capacities given in the models of the equipment i—
tems chosen in the configuration of the system may result with the reference capacity and operation strategies for the
internal gas combustion engine serving as the design variables and the comprehensive performance indexes inclu-
ding the total annual operation expenses amount of primary energy sources consumed and the quantity of carbon di—
oxide emissions serving as the target functions for optimization established was a method for designing and optimi-
zing a system. By using the method thus established an analysis and design of a trigeneration system for a building
of a hotel in Tianjin city were conducted. The optimumization results are given as follows: the reference capacity of
the inner combustion engine should be chosen as 975 kW and when the system is operating according to the strategy
of “determining heat generation on the basis of power demand” as compared with any single supply system the tri—
generation system can save expenses by 3.6% an amount of energy by 28. 9% and reduce the carbon dioxide emis—
sions by 44.7% . Key Words: cooling heating and power trigeneration system comprehensive performance index

system configuration operation strategy

= A Method for Ultrasonic Non-contact Measuring
the Gas Content and Dimension Distribution of Bubbles in a Bubble Flow HU Bian ( Hunan Wuling
Electric Power Engineering Co. Ltd. Changsha China Post Code: 410004) SU Ming=u CAI Xiao-shu ( Particle
and Two-phase Flow Measurement Research Institute Shanghai University of Science and Technology Shanghai

China Post Code: 200093) //Journal of Engineering for Thermal Energy & Power. —2015 30(2) . —193 - 199

Set up was a set of supersonic non-contact measurement device for performing an on-ine measurement of the gas

content and bubble dimensions of a gasHiquid two-phase bubble flow in a circulation system. For a vertical rectangu—



