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ent will be beneficial for decreasing transverse flow losses. The analysis of vorticity isolines shows that the horse-
shoe vortex and passage vortex measure and strength in the positively-curved blades have been found to be small-
er than those in the straight blades. Furthermore, from the distribution picture of energy loss factors one can see
that the use of positively-curved blades can bring about a decrease in energy loss of a cascade inner-flow field.

Key words: positively-curved blade, energy loss, secondary flow

= Thermal System Performance Simulation Based on a Process
System Engineering Theory [ , ] /Ding Yanjun, Wang Peihong, Lu Zhengzhong, et al (Southeastern Uni-
versity) //Joumal of Engineering for Thermal Energy & Power.—2000, 15(2).— 153 ~155
Based on the introduction of a process sy stem engineering (PSE) theory this paper sets up a process unitary mod-
el and a system model for a power plant steam turbine thermodynamic system through the use of a sequential-
module method of the PSE theory. A performance simulation has been conducted using a loop fracture and con-
vergence algorithm, and the accuracy of the above-cited model verified. Finally, analyzed and discussed is the
feasibility and importance of applying PSE theory for the power plant performance simulation, analysis, opti-
mization and diagnosis. Key words: process system engineering, sequential-module method, thermodynamic

sy stem, performance simulation

« » = A Preliminary Analysis of Seismic Load Calculation on the Ba-
sis of “ Uniform Building Code of 1997 and its Practical Use[ , |/Wang Jianhua, Yue Xue, Zhou Chengli
(Harbin Boiler Co. Ltd.) //Joumal of Engineering for Thermal Energy & Power.—2000, 15(2).— 156 ~ 159
This paper describes a seismic load calculation method as set forth in “Uniform Building Code of 1997”. The se-
lection of various factors in the seismic load calculation is discussed and practical engineering-calculation examples

given. Key words: seismic-proof design, basic seismic design, sole shear

= Superheater Tube-Bank Fracture Analysis [ ., ] Li Ming, Wang Yanbin (Harbin
No.703 Research Institute) //Journal of Engineering for Thermal Energy & Power. —2000, 15(2).— 160~
161
With the help of a finite-element method a thermal stress calculation and analysis was performed of a heat recov-
ery boiler superheater tube-bank and an outer tube network system. It is noted that during a boiler start-up the
superheater tube-bank is subjected to a most unfavorable load-bearing condition. M oreover, the layout rigidity of
the outer tube network can influence the service life and safe operation of the superheater tube bank. Key words:
supetheater; thermal stress, outer tube network, rigidity

= Numerical Simulation of a Boiler Primary-Air Flow through a
Throttle Orifice-plate[ ., ]/Pan Weiguo, Shen Feng, Zheng Puyan, et al (Shanghai Electric Power Insti-
tute) / /Journal of Engineering for Thermal Energy & Power.—2000, 15(2). —162~164
A numerical simulation was conducted of the air and pulverized-coal multi-phase flow pattern after an adjustable
throttle orifice-plate w as installed in the pulverized-coal horizontal feed-pipe of a boiler combustion system. It has
been found through the above-mentioned simulation that an effective numerical simulation method consists in the
following: a gasphase turbulent flow model is first described by the use of a K¢ dual-equation model and with
the help of SIM PLE algorithm the gas-phase speed field can be calculated. Then, a FSRT model and Lagrange
method are em ployed to calculate the particle field characteristics. Key words; gas-solid multiple-phase flow, nu-

merical simulation
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