文章编号: 1001-2060(2000)02-0131-03

铜冶炼厂余热锅炉的设计特点

(南昌有色冶金设计研究院,江西 南昌 330002) 肖平华

摘 要:在工程实践的基础上,总结了铜冶炼厂余热锅炉设计的一般原则和特点。旨在改变我国铜冶炼厂余热锅炉依赖进口的状况,尽快研制我国自行设计的此类余热锅炉。

关键词:铜冶炼厂;余热锅炉;设计特点

中图分类号: TK 229. 92+9

文献标识码: A

1 引言

余热锅炉是铜冶炼厂不可缺少的设备之一,它不但可以回收高温烟气中的二次能源,降低烟气温度,更重要的是捕集高温烟气中的烟尘,回收贵重金属,降低烟气的含尘量,保证工艺系统的畅通,为尾部工艺创造有利条件。60年代,闪速熔炼技术的出现对余热锅炉的研制工作起了促进作用,使积灰、腐蚀、磨损等问题得到解决。铜冶炼厂使用较多的冶金炉主要有:闪速炉、转炉、阳极炉等,由于冶金炉生产过程中,烟气量变化较大,烟气中SO₂及烟尘含量高。因此要使余热锅炉在这种恶劣的条件下工作,首先就要从余热锅炉的设计着手,尽可能适应烟气条件,满足工艺要求。表1列出铜陵金隆公司冶炼厂的烟气条件。

表 1 冶金烟气含 SO2、烟尘、温度表

冶金炉名称	SO ₂ 含量/ %	烟尘含量/ %	温度/ ℃
闪速炉	22. 92	139. 2	1 340
转炉	9. 6~12. 03	18 ~ 60. 6	800
阳极炉	14~17	微量	1 350

2 锅炉型式的选择及其特点

铜冶炼厂余热锅炉的结构型式基本上有两种: 一种是多通道式,烟气在锅炉中成多回程式流动;另 一种是直通式,烟气在锅炉内不转弯,成直流式流动。这两种余热锅炉在结构布置上特点各异,根据 铜冶炼生产过程的特点,大多数冶金炉排出的 SO₂ 和烟尘含量高,烟气量波动大,烟气温度高,而且烟尘中含有粘结性很强的金属。为了防止积灰,常采用直通式余热锅炉。

余热锅炉按水循环方式可分为自然循环型、强制循环型及二者相结合型三种。 究竟采用哪种型式,可根据烟气性质、入口位置、布置型式及清灰方式来确定。 其比较见表 2。

表 2 自然循环与强制循环的比较

衣 2 目然循环与独制循环的比较				
比较条件	自然循环	强制循环		
水容量和锅炉启动时间	水容量大,负荷变动 对水位影响小,突然 停电危险性小,但启 动时间长,需要设启 动燃烧器,将压力升	化反映快。使用其他 锅炉蒸汽或用冶金炉		
给水设备	高到烟气露点以上。由于水管直径大,仅用软化水设备和除氧器进行给水处理即可。	管径小,且装有集箱孔板,容易发生堵塞。		
锅炉结构 及其大小	庞大、复杂	紧凑、体积小		
吹 灰 装 置 的 效 果及烟气浓度	吹灰器作用范围有限,且增加冷空气,影响大	可用锤击式清灰器, 效率高,对锅炉无影响,浓度稳定。		
锅炉操作	简单、易行	装有循环泵, 既要监视循环水量, 又要监视水质。		
建设费用	小型锅炉采用 比较经济	对大型锅炉经济, 且省钢。		
运转费用	较低	增加纯水装置的运转费,以及循环泵的电耗费。		
锅炉效率		锤击效果好,故效率 较高。		
烟气温度调节	装调节挡板难, 故温 度调节不易。	易装挡板。		

3 重要热工参数的确定

3.1 烟气露点及排烟温度的确定

根据烟气成分,确定烟气露点。根据式(1)计算烟气中硫酸重量浓度.

收稿日期: 1998-12-28; 修订日期: 1999-03-03

作者简介: 肖平华(1965-), 男, 江西南昌人, 南昌有色冶金设计研究院冶化分院工程师.

$$C = \frac{98 \, V_{\text{SO}_3}}{80 \, V_{\text{SO}_3} + 18 \, V_{\text{H}_2\text{O}}} \tag{1}$$

$$V_{\text{SO}_3} = \rho \cdot V_{\text{SO}_3} \tag{2}$$

烟气中水蒸气和三氧化硫分压力之和为:

$$P_{\text{H}_2\text{O}+\text{SO}_3} = (b - P_{\text{R}}/13.6) (V_{\text{SO}_3} + V_{\text{H}_2\text{O}})/100$$
(3)

式中: V_{SO_3} —— SO_3 在烟气中所占的容积率, % $V_{\mathrm{H,O}}$ — $\mathrm{H_2O}$ 在烟气中所占的容积率,%

> ϱ — 烟气中 SO_3 转化成 SO_3 的百分率: 在无 资料的情况下,一般取10%。

 $b \longrightarrow$ 锅炉安装地点大气压力, Pa

 $P_{\rm R}$ — 锅炉冷却室烟气负压, Pa

PH,0+SO, —— 烟气中H2O和SO3分压力之和,

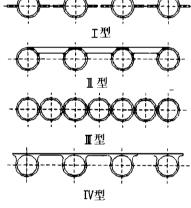
根据 C 及 $P_{H_2O+SO_3}$ 之值查文献 [2] 图 1 ~ 4, 确定出 烟气露点。

为了不使锅炉尾部受热面发生低温腐蚀,管壁 温度应高出烟气露点,并根据尾部工艺的要求确定 排烟温度。

3.2 锅炉蒸汽参数的确定

由于烟气的成分不同,其硫、水蒸气含量各不相 同。因此在烟气成分确定以后,先确定烟气露点,再 取蒸汽温度等于烟气露点,确定出余热锅炉的工作 压力, 圆整后确定余热锅炉的设计压力及饱和蒸汽 的温度。这样管壁温度就比烟气露点高出30 ℃~ 60 ℃ 从而保证了锅炉尾部受热面不会发生低温腐 蚀。

蒸汽压力、蒸汽温度确定以后,即可按锅炉热平 衡方式确定烟气最大量时的锅炉最大蒸汽产量。


锅炉结构的设计

4.1 辐射冷却室的设计

在铜冶炼厂余热锅炉中,均采用足够大的"空腔 辐射冷却室"。 合理组织辐射冷却室内的烟气动力 场,利用烟气中三原子气体和烟尘的有效辐射传热, 将高温烟气迅速冷却至烟尘的粘结温度以下,使烟 尘变成固体灰粒。烟气流速控制在1 m/s 以下。目前 使用的或正在设计的锅炉冷却室高与宽之比一般不 大于 2, 使大部分烟尘尚未和管壁接触就分离沉积 下来。但烟尘的凝固点不像煤灰软化点那样容易确

们的结合形式。一般炉内积成致密而坚硬的灰垢,都 有玻璃状物料和一些低熔点的共熔物起作用。这些 共熔物的熔点一般都在 750 ℃ 左右。实践证明,出 辐射冷却室的烟气温度限制在650 ℃左右较合理。 如果温度过低,将使冷却室受热面明显增大,并使炉 子技术经济综合效果有所降低。

锅炉水冷壁受热面结构型式很多,如图1所示: 水冷壁一般可分为四种型式. 1型 —— 以管子中心 线为对称的翅片水冷壁; Ⅱ型 —— 用扁钢焊接而成 的翅片管: Ⅲ型 —— 完全由光管组成的水冷壁: Ⅳ 型 — 特殊轧制的 Ω 型水冷壁翅片管。为了使辐射 冷却室内壁光滑, 使内壁灰尘不易粘结和易干清除, 辐射冷却室水冷壁管官采用 Ⅱ 型或 Ⅳ 型,有条件 最好采用Ⅳ型。鉴于铜冶炼厂烟气含尘大、硫分、水 分含量较高,因此辐射冷却室常采用整体水冷壁结 构,这样可防止炉内SO。的渗出或外面空气漏入,从 而防止了腐蚀,并保证了 SO₂ 的浓度,有利于制酸。

水冷壁结构型式

锅炉管径 4. 2 的选取

锅炉管径大 小对锅炉重量指 标具有决定性的 影响。管径愈小, 传热愈好, 重量 愈小。设计资料 表明,锅炉管径 减小二分之一 锅炉重量可减少 三分之二。因此, 现代锅炉管径已

有逐渐减小之趋势。

工程实践表明,对强制循环锅炉,可以采用 Φ 32 \times 3.5 mm, Φ 29 \times 3.5 mm, Φ 25 \times 3.5 mm 的管子; 对 自然循环锅炉,则可采用 Φ 38×3.5 mm, Φ 51×3.5 mm 的管子: 选用更大管径, 徒费金属, 大无必要。

4.3 对流受热面的设计

为了防止烟尘结渣堵塞管间,常在冷却室出口 设计凝渣管。管子横向间距布置得较大(s/d = 3)6, 常用 5~6), 为水冷壁管距的4~5倍, 纵向间距 3.5 d 以上。对流受热面的烟气流速约在 10 m/s 左 右。为了防止磨损,常取4m/s。管道磨损程度与烟 气流速、含尘量和管径的关系如式(4) 所示:

$$\Delta \sigma / t = K \circ W^{3.52} \circ C^{0.64} \circ d^{0.92}$$
 (4) ing House. All rights reserved. http://www.cnki.net

定。因为它不但取决于烟尘的成分,而且还取决于它

式中: $\Delta \sigma / t$ —— 单位时间磨损量, g/s

△σ---- 磨损量, g

t ----- 时间, s

W── 烟气流速, m/s

C── 烟尘浓度, g/ m³

d----管径外径, mm

k---- 实验系数

从上式可知,烟气中烟尘对受热面的磨损主要取决于烟尘的运动速度,烟尘的浓度。烟气经辐射冷却室后,烟气中含尘量一般可减少40%~60%。

在相同条件下,横向冲刷的积灰速度比纵向冲刷要快得多,这是因为积灰速度是近似地反比于气流边界层的厚度。当边界层厚度为 $0.5 \sim 1.5 \text{ mm}$ 时,纵向冲刷的积灰速度仅为无边界层横向冲刷的 $1\% \sim 1.5\%$ 。一般地说,纵向冲刷比横向冲刷有着更厚的气流边界层。因此要使积灰速度放慢和清灰方便,最好是低烟速纵向冲刷受热面。从热交换与质交换原理也可以说明这一点。因为热交换越强,质交换也越强,即烟气对管壁放热系数越大,烟尘对管壁放热系数越大,烟尘对管壁撞击的机会也就越多,也就越容易积灰。当烟尘较大时,选用烟气纵向冲刷管束。一般含尘量 50 g/m^3 以上采用纵向冲刷方式;含尘量 $10 \sim 50 \text{ g/m}^3$,采用横向冲刷方式。

4.4 锅炉灰斗的设计

高温区灰斗的四周应用水冷壁遮盖, 使烟气与水冷壁管直接接触, 并使烟尘在灰斗中得到进一步冷却, 形成不粘结性积灰。

锅炉的集灰斗设计成两侧壁倾斜,前后壁倾斜角(与地面夹角)不小于 $68^{\circ} \sim 70^{\circ}$,侧壁倾斜角一般不小于 65° ,至少不应小于 60° (干烟尘的堆积角为 55° 左右)。

4.5 清灰设施的设计

无论锅炉结构设计和烟气动力场组织得如何合理,锅炉受热面的积灰是不可避免的,关键是用什么方法及时清理。通常积灰清理方法有两种:一种是机械振打清灰;另一种是吹灰器清灰或有振打与吹灰相结合的清灰方式。通常在辐射冷却室和对流受

热面分别布置吹灰器和弹簧振打锤,按照预先设定的程序自动运行。

5 典型铜冶炼厂烟气条件及余热锅炉主要 技术参数

表 3 为年产 10 万吨电解铜冶炼厂的烟气条件。 表 4 为余热锅炉的技术参数。

表 3 闪速炉及转炉烟气条件

序号	项目	闪速炉	转炉
1	锅炉入口烟气量/ m3 · h-1	30 234	41 367~ 43 209
2	锅炉入口温度/ ℃	1 340	800
3	烟气成分(体积百分比%)		
	SO_2	19. 39	9. 60 ~ 12. 03
	CO_2	8. 18	
	O_2	2. 35	7. 12 ~ 7. 32
	N_2	61	76. 83 ~ 79. 12
	H_2O	9.08	3. 42 ~ 4. 30
4	烟气含尘量/ g°m ⁻³	117. 7	18. 1 ~ 60. 6
5	锅炉出口烟气温度/ ℃	360	400
6	锅炉入口烟气压力/Pa	0~-150	0~-50

表 4 闪速炉、转炉余热锅炉主要技术参数

序号	项目	闪速炉余热锅炉	转炉余热锅炉
1	型式	强制循环户外设置式	强制循环户外设置式
2	工作压力/MPa	4. 71	4. 71
3	给水温度/ ℃	104	104
4	蒸发量/t°h-1	24	10
5	烟气量/ m ³ ° h ⁻¹	30 234	43 209
6	烟气温度		
	锅炉入口	1 340	800
	辐射室出口	< 725	< 681
	烟气出口	< 360	< 400
7	传热面积/m2		
	辐射水冷壁	540	171
	对流部分	1 128. 8	781
	合计	1 668. 8	952
8	锅炉外形尺寸/m		
	辐射室	15×6×12.66	8. 34× 3. 6× 5. 1
	对流区	14 56×3 6×3.9	6. 3 1× 3. 6× 3. 9

参考文献

- [1] 金安定等编. 工业锅炉原理. 西安交通大学出版社出版, 1989.
- [2] 北京有色冶金设计研究总院主编. 余热锅炉设计与运行. 冶金工业出版社, 1983 年.

(复编)

粉煤流化床燃烧(PC-FBC)炉膛烟温试验研究=Experimental Study of the Flue-gas Temperature Distribution in a Pulverized Coal-fired Fluidized Bed Furnace[刊,汉]/Chen Hongwei, Ding Changfu, Yan Shunling, et al (North China Electric Power University)//Journal of Engineering for Thermal Energy & Power.—2000, 15(2).—128~130

Pulverized-coal fluidized-bed (PC — FB) combustion pertains to a new type of efficient clean-coal combustion method. Presented in this paper are the results of a study concerning the flue-gas temperature distribution characteristics in a PC — FB furnace. The main contents of the study include: the stability and uniformity of flue-gas flow in the PC — FB furnace, the bed temperature, fluidized speed, the particle average diameter of the bed material, secondary air flow rate, the effect of the secondary-air feed location on the flue-gas temperature distribution in the furnace. In addition, a rational furnace flue-gas temperature distribution is also given on the basis of the above study. **Key words:** pulverized-coal, fluidized bed, combustion, temperature distribution.

铜冶炼厂余热锅炉的设计特点 = Design Features of a Copper Smeltery Heat-recovery Boiler [刊,汉]/Xiao Pinhua (Nanchang Non-ferrous Metallurgical Design Research Institute)//Journal of Engineering for Thermal Energy & Power. = 2000, 15(2). = 131 ~ 133

On the basis of proven engineering practice summed up are the general principles and specific features of a steel smeltery heat-recovery boiler. With the aim of changing the present situation of having to use imported heat-recovery boilers for copper smelteries there exists a real urgency to develop heat-recovery boilers based on domestic design for use in such smelteries. **Key words:** copper smeltery, heat recovery boiler, design features

火力发电厂细粉分离器改进—An Improvement on Thermal Power Plant Fine Pulverized-coal Separators [刊,汉]/Lu Tai(Harbin Institute of Technology)//Journal of Engineering for Thermal Energy & Power.—2000, 15(2).—134~136

The general situation of the use and evolution of fine pulverized-coal separators for thermal power plants since the founding of the People's Republic of China was reviewed and the test data and use-effectiveness of a novel dual-stage finely-pulverized coal separator described in detail. **Key words:** thermal power plant, pulverized-coal preparation system, separation efficiency, separator

船用汽轮循环泵的改进设计=Improved Design of a Marine Steam Turbine Circulating Pump [刊,汉]/Qiu Zufa, Gao Lei, Qin Xiaocheng (Harbin No. 703 Research Institute)//Journal of Engineering for Thermal Energy & Power. —2000, 15(2).—137~139

The design and production technology of a marine steam turbine circulating pump has been improved on to resolve a whole range of problems. The circulating pump following such an improvement has undergone a land-based test and seafaring verification inspection and been found to have fully met the preset target concerning its performance. **Key words:** turbine circulating pump, improvement, design

火电厂空气干燥器 PLC 控制系统的设计与实现=Design and Implementation of the PLC Control System of a Thermal Power Plant Air Dryer [刊,汉]/Li Dazhong, et al (North China Electric Power University)//Journal of Engineering for Thermal Energy & Power. = 2000, 15(2). = 140 < 141

A modification design was conducted of the control system of a thermal power plant boiler air-dryer through the addition of a OMRON PLC controller. The on-site commissioning tests show that the PLC-based control system has promoted a safe and reliable operation with powerful functions and a high flexibility in conducting operation changes. As a result, all design targets have been attained. **Key words:** PLC controller, air dryer, operating time-sequence, control logic

time-sequence, control logic 1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net