

冷量时,

热

程

其 侮 热量近似为	文章编号: 1001-2060(1999)03-0205-04
零, 载冷剂进出口	а /
温 蓋 $\Delta T_{\rm b} \doteq 0 \text{°C},$ 亦的 $T_{\rm bo} \doteq T_{\rm bi}.$	高水分煤在流化床中燃烧
個 5表示了初	k 时 NO x 的排放特性 [*]
盘管传热有效度。	
随释冷时间的变化	
「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	Ⅰ [洞 云 ¹ ¹ ¹ ¹ 1 ¹ 1 ¹ 1 ¹ 1 ¹ 1 ¹
间的 ₀ 增加,传热有	4 , 的\$\shows, 户内的 CO 浓度和空一燃比等都对于 NO 转换率有
效度 ∈ 逐渐降低	7/h 较大影响。随着床内水分的增加,使得 CO 的浓度增加,导
这主要是由于载兴 图 4 載冷 剂出 剂出口温度, <i>T</i> ゅ 3	口温度随Q释转换率下降。当空一燃比下降时,NO转换率也减少。
》	化规律1 NO 工从不足示反应的东小反应还干不为,影响 NO 新 放的主要因素是床内 CO 的浓度及焦炭的含量。而 H。对 NO
^{0.8} 由图 万也 可看	■ 的反应影响不大。
出放冷量 Qd 随利	关键词 流化床燃烧 高水分煤 NO 排放 数值计算
冷的间的变化规	见 中图分类号 TK 16:0643
律。,故冷量 Qd 是	
随着放冷时间增加	□ 1 头書
而逐渐减小的。这	ž N
是由于随着融冰时	t 我国有大量的高水分煤(褐煤),另外洗煤厂每
间的 ^{增加,} 水层加	上一年。要产集 几千万吨的煤泥。随着大规模洗煤厂的增
厚、传热系数减小	^{、 ^{1/h}加,煤泥量每年都在快速增长。煤泥含有大量的水}
所致85 传热有多	波度。金麗和時高达70%),热值很低,很难有效利用,而且
冷时间的变	_{、化规} 排放时占用大量土地, 严重污染环境。这些高水分
4 <u>结束语</u>	煤的高效低污染燃烧对资源的合理应用和环境保护
° –	都有重要意义,具有明显的经济和社会效益。
。 本文建立的法	x 流化床燃烧高水分煤的研究已有多年历
盘管融冰过程数理	裡 ♀ ^[1~4] 。]对于燃料的凝聚、结团、结渣等特性研究
欃뀤 <mark>,</mark> 能很好地表	$ {f v}$ 较多而对于水分发生较大变化时, NO $ x $ 的排放特
征其动态过程,管	奇 性等则研究较少。本文通过数值计算研究了高水分
单直观,这将对空	⊵ 煤在鼓泡流化床中燃烧时 NOx 的排放特性,并得
调蓄冷工程的设计	十 到了影响 NO x 生成和还原反应的主要因素。
具有很好的指导仍	$\frac{1}{4} \frac{t}{t/h} \frac{6}{6} \frac{8}{8}$
值。利用该模型 以份望、优化整个	J 2 NO x 反应动力学模型 ^{冷量随释冷}
冰盘管融现放窄远	$t^{t,t,t,t,t,t,t,t,t,t,t,t,t,t,t,t,t,t,t$
程,使整个系统性能达到最佳状态。	成过程是相当复杂的 ^[5,6] ,包括许多生成和还原反
华本中学	应(见图 1),涉及到的基本反应可能有上百之多。
参与 关 附	通常只在详细研究 NO 生成机理时,才对于包括每
[1] Strand R K, Pedersen C O, Coleman G N. Development of direct	²¹ 个基本反应的 NO 形成过程进行数值计算。而对于

实际燃烧装置中 NO 的排放特性预测一般只考虑其

中最重要的几个反应,这样可以抓住影响 NO 排放

· NF 生計 NI

and indirect ice-storage models for energy analysis calculations. ASHRAE Trans, 1994.

版稿日期^{el}1598-N5tchell JW修胶稿 S1998-M99elli 死 of ice storage

*国家攀登计划和自然科学基金资助项目 A 类 E060410 编号 59776023 的主要因素,减少了计算的复杂性,有利于分析试验 工况对于 NO 排放的影响程度。 mg House. All tights reserved.。http://www.cnki.net ?1994-2018 China Academic Journa Electronic 年出

在分析 NO 的生成途径时, 做了以下假设: 一是 在 NO 反应模型中忽略了热力 NO 的反应过程, 这 是由于流化床中通常的燃烧温度在 800 ℃~900 ℃ 左右, 热力 NO 在流化床中的生成量极少; 二是在燃 料 NO 的计算模型中, 假设挥发分 N 以 NH₃ 的方式 析出, 这是由于缺乏 HCN 或其它挥发分 N 成分的 反应资料, 而 NH₃ 的反应机理比较清楚; 三是假设 焦炭 N 在流化床燃烧过程中氧化成为 NO, 这是由 于焦炭 NO 的生成机理非常复杂, 目前还正在研究 之中, 而且焦炭 NO 只占整个燃料 NO 的 10% ~ 20%, 考虑到鼓泡流化床的燃烧特点(焦炭主要在床 内燃烧), 这样的假设是可以接受的。

在以上的假设基础上,根据 Johnsson 对于流化

床中 NO 的反应模型的详细分析^[7],采用了 7 个均 相和非均相的反应方程来计算 NO 的生成和还原反 应,表 1 给出了反应动力学模型中的反应式、速率的 表达式及常数等。这些数据和表达式中的一部分由 文献直接给出,另一些由 Johnsson 对于文献中的实 验数据归纳计算得到^[7]。同时,Johnsson 还分析了 由文献得到的各个反应方程的活化能、反应级数、温 度范围和浓度水平对于流化床中的 NO 生成和还原 反应模拟计算的影响,指出有些反应还缺乏适合于 流化床工况的试验数据。

由于所有反应动力学数据的数量级均小于流化 床中燃烧速率的数量级,因此可以忽略气体传质对 于计算的影响。

序号	反应	催化物	反应速率式	速率常数	文 献
1	$NO + CO \rightarrow 1/2N_2 + CO_2$	焦炭	$-r_{\rm N0} = k \frac{k_1 P_{\rm N0}(k_2 P_{\rm C0} + k_3)}{k_1 P_{\rm N0} + k_2 P_{\rm C0} + k_3}$	$k_{1} = 2 \ 1 \exp(-13 \ 100/ \ T) \text{ kmol } \text{S}^{-1} \text{ m}^{-2} \text{MPa}^{-1}$ $k_{2} = 73^{*} 10^{4} \exp(-9 \ 500/ \ T) \text{ kmol } \text{S}^{-1} \text{ m}^{-2} \text{MPa}^{-1}$ $k_{3} = 0.\ 015 \exp(-20 \ 100/ \ T) \text{ kmol } \text{S}^{-1} \text{ m}^{-2}$ $k = FS\rho_{\text{char}} \eta \text{ m}^{-1}$	[8]
2	$NO+Char \rightarrow 1/2N_2+CO$	气固粒子	$-r_{\rm NO} = kC_{\rm NO}$	$k = 3.5^{\circ} 10^{14} \exp(-29\ 700/\ T) \mathrm{S}^{-1}$	[10]
3	$NO+2/3NH_3 \rightarrow 5/6N_2+H_2O$	均相气体	$-r_{\rm NO} = kC_{\rm NO}C_{\rm NH_3}$	$k = 2.3^{\circ} 10^{28} \exp(-60\ 000/\ T) \mathrm{m}^{3} \mathrm{kmol}^{-1} \mathrm{S}^{-1}$	[11]
4	$\rm NO+H_2 \rightarrow 1/2N_2+H_2O$	焦炭	$-r_{\rm NO} = kC_{\rm NO}C_{\rm H_2}$	$k = 4.6 T \exp(-12 \ 120/T) \mathrm{m}^{3} \mathrm{kmol}^{-1} \mathrm{S}^{-1}$	[12]
5	$NH_3 + 5/40_2 \rightarrow NO + 3/2H_2O$	焦炭	$r_{\rm NO} = kC_{\rm NH_3}C_{\rm O_2}$ $r_{\rm NO} = kC_{\rm NH_3}$	$k = 4.975 \cdot 10^{12} \exp(-15\ 000/\ T) \mathrm{m}^{3} \mathrm{kmol}^{-1} \mathrm{S}^{-1}$ $k = 4.129 \cdot 10^{8} \exp(-15\ 000/\ T) \mathrm{S}^{-1}$	[9]
		均相气体	$r_{\rm NO} = kC_{\rm NH_3}C_{\rm O_2}$	$k = 2.3^{\circ}10^{28} \exp(-60\ 000/\ T) \mathrm{m}^{3} \mathrm{kmol}^{-1} \mathrm{S}^{-1}$	[11]
6	$2\mathrm{NH}_3 + 3/2\mathrm{O}_2 \rightarrow \mathrm{N}_2 + 3\mathrm{H}_2\mathrm{O}$	焦炭	$-r_{\rm NH_3} = kC_{\rm NH_3}C_{\rm O_2} - r_{\rm NH_3} = kC_{\rm NH_3}$	$k = 1.642 \cdot 10^{13} \exp(-15\ 000/\ T) \mathrm{m}^{3} \mathrm{kmol}^{-1} \mathrm{S}^{-1}$ $k = 1.244 \cdot 10^{9} \exp(-15\ 000/\ T) \mathrm{S}^{-1}$	[9]

+ -	****	
无一	· 治化床田 N() ~ 生脉反应机 시字桿 型目	비비 모 씨 귀 개 씨 씨 분 가 지 사 모 씻 북
11 1		

3 反应器模型

在计算时采用上节的反应动力学模型,并把流 化床假设为一个简单的反应器。计算结果可以与不 同试验工况的 NO 排放量进行比较,从而可以得到 煤中水分对于 NO 排放的影响,而且可以得到不同 反应对于 NO 生成量贡献的大小,从而找到对 NO 生成量起最大作用的反应。

反应器模型采用单相平推流模型, 气固两相反 应的浓度表达式如下^[7]:

 $\frac{\mathrm{d}C}{\mathrm{d}V} = \frac{1}{V_{\mathrm{e}}} \sum_{i} r_i (1-\varepsilon) X_i$

均相反应的浓度表达式如下:

$$\frac{\mathrm{d}C}{\mathrm{d}V} = \frac{1}{V_0} \sum_{hom.} r_i \,\varepsilon \tag{2}$$

流化床中的 NO 和 NH₃ 浓度由上两式计算得 到,计算时一些气体的浓度(如 O₂、CO 等)作为输入 参数给出, H₂ 的浓度用下面的反应式计算:

$$C+H_2O \rightarrow CO+H_2 \tag{3}$$

在计算中,认为 O₂ 浓度在床内沿高度方向线 形衰减,CO 浓度由测量得到,并认为床内各处的 CO 和H₂ 的浓度一致。假设挥发分 N 与焦炭 N 各 占 50 %, NO 和 NH₃ 的初始浓度由此给定。计算的 工况条件如表 2 所示。

dV Vong Academic Journal Electronic Publishing House: Altrights reserved. http://www.cnki.net

(1)

工况		А	В	B C		Е
空一燃比	1. 337	1. 402	1. 186	1. 820	2. 203	
水分, %		1. 66	25	25	25	25
温度, ℃		830	790	725	825	750
表观气流速度, m/ s		1. 856	1. 830	1. 553	1. 785	1. 605
流化后的床高,m		0. 21	0. 21	0. 21	0. 21	0. 21
床内颗粒空隙率		0. 55	0. 55	0. 55	0. 55	0. 55
总燃料 N 转换为 NO 时的 排放浓度, mg/m ³ (6%0 ₂)		1758	1618	2114	1370	1128
挥发分N 所占比例,%		50	50	50 50		50
床内焦炭容积份额,%		2.5	2.5	2.5 2.5		2.5
出口氧气浓度,%	7.60	8.18	2.05	10. 5	14. 6	
与休沈府 1/	CO	0. 393	0. 877	5.0	0. 513	0. 294
□14冰度,%	H ₂	0. 03	0. 03	0. 02	0. 04	0. 04

4 计算结果和讨论

计算的工况条件与试验一致,NO的计算结果可以同流化床中高水分煤的燃烧试验结果^[13]进行

比较。表3给出了计算的 NO 排放量与实际测量 值,可见两者比较接近。

影响流化床 NO 排放量的因素很多,通过计算 发现煤中的水分、床内的 CO 浓度和空一燃比等都 对于 NO 转换率有较大的影响。高水分煤在流化床 中燃烧时,随着床内水分的增加,由于水煤气反应, 使得 CO 和 H2 的浓度增加。当煤中水分由 1.6% 增加到 25%时,CO 的排放量由 4 913 mg/m³增加 到 10 963 mg/m³,这时计算的 NO 转换率由 15.1% 下降至 12.5%。空一燃比对于 NO 排放量也有较 大影响,由表 2 的后四个工况可见,随着空一燃比的 减少,床内 CO 浓度迅速增加,而 O₂ 浓度很快下降, 当空一燃比由 2.203 (工况 E)减少到 1.186(工况 C)时,计算的 NO 转换率由 20.3%下降至 6.4%。 当然,床温也对 NO 的转换率有一定的影响。

NO 排放量	A	В	С	D	Е
测量值 mg/ m ³ (6%0 ₂)	293. 8	179. 7	114.8	202. 9	255. 1
计算值 mg/ $m^3(6\%0_2)$	265. 5	202. 2	135.4	198. 6	229. 0
│ 测量的 NO 转换率, %	16.7	11. 1	5. 43	14.8	22. 6
计算的 NO 转换率, %	15. 1	12.5	6.40	14. 5	20. 3

表 4 NO 生成和还原反应数值计算的结果

			累积转换率, %				
		唯 化 初	А	В	С	D	Е
1	$NO+CO \rightarrow 1/2N_2+CO_2$	焦炭	42 0	50.4	55 (44 1	41 4
2	$NO+C$ har $\rightarrow 1/2N_2+CO$	气体一固体粒子	45. 9	50. 4	55. 6	44. 1	41. 4
3	$NO + 2/3NH_3 \rightarrow 5/6N_2 + H_2O$	均相气体	0. 00	0. 00	0. 00	0. 00	0. 00
4	$NO + H_2 \rightarrow 1/2N_2 + H_2O$	焦炭	0. 003	0. 002	0. 003	0. 002	0. 003
5 $NH_3 + 5/4O_2 \rightarrow NO + 3/2H_2$		焦炭	9. 0	12.9	12.0	8.6	11.7
	$NH_3+5/40_2 \rightarrow NO+3/2H_2O$	均相气体	0. 00	0. 00	0. 00	0. 00	0. 00
6	$2NH_3 + 3/2O_2 \rightarrow N_2 + 3H_2O$	焦炭	41. 0	37. 1	38. 0	41. 4	38. 3

计算还得到了生成 NO 和 NH3 的各个反应的 累积速率,表4 给出了对于不同水分(O2 浓度约为 8%)、不同空-燃比(煤中水分为 25%)的各个反应 的累积转换率。图2直观地表达了 NO 生成和还原 反应的转换率。

可以看出,有两个 NO 的还原反应是非常重要的:

$$NO + CO \rightarrow 1/2N_2 + CO_2 \tag{4}$$

$$NO + Char \rightarrow 1/2N_2 + CO$$
 (5)

图 2 NO 生成和还原反应各过程的转换率(对工况 A) ?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnk1.net 炉

执

微机控制系统,具有以下功能有:

程

Т

3.1.1 数据采集、处理及显示 装置设有 12 寸绿 色 CRT 显示,可对锅筒水位,蒸汽压力炉膛负压、炉 内各点温度、煤量、汽量、水量、风量、送风风压等实 行模拟流程图显示。改进后,采取了对模拟信号的 限幅措施,从而避免了信号超量程造成的数据紊乱 现象。

3.1.2 控制系统 具有独立的给水调节系统和给 煤、燃烧自动调节系统。微机能完成对给水、给煤、 送风与引风的自动控制,使锅筒水位、蒸汽压力、炉 膛负压、风煤配比系数、烟气含氧量等运行参数,维 持在规定范围,使锅炉处于安全、经济、稳定运行状态,解决了给煤速度信号与微机控制的匹配问题,能 适应我厂生产用汽量变化大的实际情况,满足了生 产要求。

3.1.3 报警 该系统可对水位、蒸汽压力、炉膛温 度、炉膛负压等参数实现上下限越限报警。当运行 参数越限时,声光自动报警。上下限位由操作人员 在线设定、修改。

3.1.4 报表打印 本机配有 80 字符/行的通用并 行打印机,可打印出十几种参数的数据,形成日用 汽、水、煤统计报表,并开发出随机打印运行总图、光 柱显示图、给定测量值显示图等多项功能。

3.1.5 累 计 积算 对汽量、水量、煤量等进行累计 积算,并可对产汽量进行压力校正计算。

3.1.6 手操/自动双向无扰动切换 备有后备操作 装置,能实现直接人工强电操作,提高了微机在生产 中的适用性。

3. 1.7 参数在线修改 在自动工作状态下,对各给 定值、PID 整定参数、配比系数、实时时钟等实现在 线修改,并可在 CRT 画面上显示。

3.1.8 备有 RS232 全双工串行接口,可实现计算 机联网与管理。

3.2 系统硬件

本系统以 Z180MPU 为核心, 主机箱内配有 9104ACPU 板, 9210 高分辨率显示板, 0811 光隔离 A/D 板, 1234 光隔离热电阻 A/D 板, 4302, 4306 光 隔离开关量 I/O 板, 11060 光隔离 D/A 板, 各模板 通过 STD 总线与 CPU 相连,构成完整的工控主机, 系统组成见图 1。

3.3 系统控制原理

工业锅炉本身是一个动态特性比较复杂的对 象,其具有多输入、多输出,参数间相互耦合等特性。

21994-2018 China Academic Journal Electronic Publishing Flouse. All rights reserved. http://www.chki.net