热水锅炉微倾斜管内工质极限水速的确定

朱群益 陈崇枢 杨明新

(哈尔滨工业大学)

〔摘要〕 本文对带走吸附在锅炉管子壁面上的氧气泡所需的水速进行了试验 研 究, 得 到了带 走 当量直径为 d1 的气泡所需的工质流速W的计算式,同时给出了为防止气体在微倾斜管管 壁上大 量积聚的工质极限流速值。

胢

关键词 热水锅炉 贴璧气泡 最小水速

1前言

近年来,热水锅炉的应用十分广泛。但 是,许多运行中的热水锅炉循环水速较低,当 补给水不除氧或除氧不彻底时,往往产生由 于循环水速太低而不能及时带走吸附在管壁 上的氧气泡(称贴壁气泡),导致严重的氧 腐蚀,影响锅炉的安全运行与使用寿命。本 文所说的极限流速,指水能及时带走吸附在 管壁上的氧气泡,以避免氧气在管壁上大量 积聚的最低水速。为此本文进行了带走贴壁 气泡所需的工质流速的试验研究。

2 理论分析

如图1,垂直的管子壁面上有一贴壁气泡,半径为*R*(m), 气泡与壁面间的接触角为*a*(度)。

设气泡与壁面间的摩擦系数为 C_s , 气泡 为球形。当管内流体静止时, 气泡受到两个 力的作用, 即浮力 $F_B(N)$ 和气泡表面张力 $F_s(N)$ 。

图 1 垂直壁面上的贴壁气泡

引入气泡与壁面间的摩擦阻力 $F_{r}(N)$,

$$F_m = C_s \cdot F_s \tag{1}$$

设图1中的浮力 F_B 和摩擦阻力 F_m 大小 相等,方向相反时,气泡脱离壁面,此时: $F_m = F_B$ (2) 即 $C_*F_* = F_B$ (3)

$$C_s F_s = F_B \tag{3}$$

其中
$$F_s = 2 \cdot \pi \cdot R \cdot \sigma \cdot \sin \alpha$$
 (4)

$$F_B = V_B (\rho' - \rho'')g \tag{5}$$

式中 σ, ρ' — 水的表面 张力 系 数 与 密 度, N/m, kg/m³;

由图1可得:

收稿日期 1990-08-02

$$V_B = \frac{\pi}{3} R^3 (2 + 3\cos a - \cos^3 a)$$
 (6)

将式 (3) 至式 (6) 代人式 (2) 得:

$$C_{\tau} = \frac{R^2(2 + 3\cos\alpha - \cos^3\alpha) \cdot (\rho' - \rho'')g}{6 \cdot \sigma \cdot \sin\alpha}$$

(7)

为便于分析,引入气泡当量直径d₁(m), 定义半径为 R的贴壁气泡的体积等于当量直 径为d₁的完整球形的气泡体积,即:

$$\frac{\pi}{6}d_1^{3} = \frac{\pi}{3}R^3(2 + 3\cos\alpha - \cos^3\alpha)$$
 (8)

接触角α与壁面润湿性和气泡直径有关 (见文献 1),文献 2、3中分别取为 65° 和 50°,但均为蒸汽气泡与壁面间的接触 角。对于氧气泡采用照相办法,根据照片上 的气泡形状,可以测得接触角 α (见文献 4)。测量得对于碳钢管壁及在本文所用的 气泡直径范围内,认为接触角 α 取为70°较 合适。则由式(8)得:

 $d_1 = 1.814R \tag{9}$

由式(7)可得:

$$C_{s} = 1.58 d_{1}^{2} \cdot (\rho' - \rho'') / \sigma \qquad (10)$$

对于倾斜管,如图 2 所示,设管子与水 平面间的夹角为 β (度),当管内水流动时, 气泡受到三个力的作用,即浮力 F_B 、表面 张力 F_s 、水对气泡的作用力 F_f (N)。

图 2 倾斜管壁面上的贴壁气泡

设当作用在气泡上的各力在与水流平行 方向上的分力之和大小相等、方向相反时, 气泡脱离壁面。由力平衡条件得: $F_I \pm F_{\mu} \sin\beta - C_s (F_s + F_{\mu} \cos\beta) = 0$ (11) 式中,当浮力 *F*^B 在水流方向上的分力与力 *F*_f 方向相反 时取负号,此时称管内工质为 倒流;反之取正号,称为顺流。图 2 所示的 为顺流工况。

$$F_{I} = C_{D} \cdot \frac{\pi}{4} d_{1}^{2} \cdot \frac{\rho' W^{2}}{2} \qquad (12)$$

式中
$$W$$
 — 水的流速, m/s。
合并式 (11)、式 (12) 得:
$$C_D = \frac{8[C_s(F_s + F_B \cos\beta) \mp F_B \sin\beta]}{\pi \cdot \rho' \cdot d_l^2 \cdot W^2}$$

(13)

式中, 顺流取负号, 倒流取正号。

3 试验结果与分析

采用图 3 所示的试验台,试验时,可任 意改变试验件 "3"与水平面间的夹角β。试 验件由碳钢管做成,内径D,为46(mm)。 管 上开有用机玻璃做的透明窥视孔,以便观测 气泡直径和确定气泡脱离壁面瞬间;在管上 钻有一直径为0.1(mm)的小孔,通过小孔注 入空气,并使形成的气泡吸附在壁面上,来 模拟实际锅炉中管子壁面上形成的气泡。台 上安装了加热器和冷却器,以改变回路中的 水温。试验在常压下进行。

1.水箱 2.冷却器 3.试验件 4.加热器 5.流量计 6.水泵

试验得,对图1所示的垂直管,当管内

水静止,水温 t = 20 °C 时,气泡脱离壁面时 的当量直径 d_1 为2.7×10⁻³(m)。将 d_1 代入式 (10)得:

$$C_s = 0.158$$

改变当量直径d₁、 夹角β、 回路中水温 t 及水的流向, 得到图4和图5所示的试验曲 线。

图 5 试验曲线

图中只给出了儿种工况的试验数据,由 于曲线较密集,故当β=45°时的数据未给 出。

由图可见,当 $d_1 < 1.0 \times 10^{-8}$ (m)时,水 流向及夹角 β 对带走贴壁气泡所需的水速影 响较小。这是因为当 d_1 较小时,浮力 F_B 与 表面张力 F_s 相比可以忽略,则由式(11) 可知,此时带走贴壁气泡所需水速主要与 d_1 有关。

将 C。及试验数据代入式(13)中,得 阻力系数C_D的计算式,再将C_D代回式(13) 中,化商后得带走当量直径为d₁的贴壁气泡 所需的水速W的计算公式: $W = \frac{\nu^{0.7}}{\sigma^{0.6}} [9.5d_1^{-1.2} \mp 15d_1^{0.8} \beta]$

$$(\rho' - \rho''))^{0.7}$$
 (14)

式中, v为水的运动粘度 (m²/s); 顺流取 负号, 倒流取正号; d1的范围为 0~2.7× 10⁻³ m。

试验发现,对微倾斜管($\beta < 15^{\circ}$),不论 管内水是顺流还是倒流,当水温 $t = 20^{\circ}$ 水速 $W \leq 0.2$ m/s, 及当 $t = 70^{\circ}$ 、 $W \leq 0.13$ m/s时,水流不能带走贴壁气泡,此时 气泡不断增大,最后形成一层气膜覆盖在管 壁上。显然,若在锅炉管子中发生这种现 象,则会造成严重的氧腐蚀。但当 $\beta \geq 30^{\circ}$ 时,不论顺流还是倒流,都不存在气体在管 壁上大量积聚的现象,此时贴壁气泡或者被 水流带走,或者当气泡增大到一定直径后, 在浮力作用下自行脱离壁面。

当水温t = 90 ℃, $d_1 = 2.5 \times 10^{-2}$ m时, 若管子水平放置($\beta = 0^\circ$), 应用式(14) 计算得带走该贴 壁 气 泡 所 需 水 速 W 为 0.12 m/s。

4 结 论

1. 带走当量直径为d₁(m)的贴壁气泡 所需的最低水速为:

 $W = \frac{v^{0.7}}{\sigma^{0.6}} (9.5dt^{-1.2} \pm 15dt^{0.8} \cdot \beta$

• $(\rho' - \rho'')$]^{0.7}

2. 由试验及计算得,对微倾斜管(β<
 15°),为防止气体在管壁上大量积聚的极限水速应大于0.15 m/s。

参考文献

- 1 Jacob M. Heat Transfer. New York: 19-9
- 2 黄承慧。锅炉水动力学及炉内传热。机械工业出版社,1982

3 Fedorov L F. The void fraction in heated

channels at positive wet-steam enthalpies. Heat Transfer-Soviet Research, 1980, 12(6) 4 朱群益。热水锅炉水动力特性试验研究。哈尔滨 工业大学硕士学位论文,1986

An Experimental Study of Minimum Water Flow Speed Required in Hot-Water Boiler Tubes

Zhu Qunyi, Chen Chongshu, Yang Mingxin

(Harbin Institute of Technology)

Abstract

In this paper is studied the water flow speed needed to break away gas bubbles on boiler wall tubes with a formula for calculating such a flow speed and the minimum flow speed requisite to preventing oxygen bubbles from gathering excessively on the slightly inclined tube wall being also given.

Key words: hot-water boiler, gas bubbles on the wall, minimum flow speed of water.

(上接第27页)

The Design of Fluidized Bed Combustion Boilers with Fly Ash Reinjection

Zhao Guangbo, Lu Huilin, Qin Yukun

(Harbin Institute of Technology)

Abstract

The presently available FBC boilers generally suffer from a poor combustion efficiency, because the flue gas from a fluidized bed contains a large amount of carbon-rich fine particles and combustibles. Fly ash reinjection is one of the effective methods for improving combustion efficiency in such cases. This paper presents a calculation procedure for a fluidized bed boiler featuring fly ash reinjection.

Key words: fly ash reinjection, fluidized bed boiler, design method