舰船燃气轮机燃烧室壁温试验研究

唐乾惕(哈尔滨船舶锅炉涡轮机研究所)

〔摘要〕 文中提出璧温分析整理时应采用 Tws = Tw 288 T₁这一折合温度。 研究结果表明, 影响分 管或环管型燃烧室寿命的关键部位是联焰管后 第一段 筒身末端及第二段筒身。该处 最易发生翘 曲, 鼓包、变形。消除的办法是保持该处气膜冷却的稳定性。本文同时建议在对燃烧室寿命进行 估算时,引入加速次数作为修正因子。

关键词 燃气轮机 燃烧室 壁温 试验

一、前 言

燃气轮机燃烧室是发动机中寿命最短的 部套之一。我所研制的第二代舰用燃气轮机 经过第一阶段试车时发生了联焰管局部烧蚀 的故障。经检修及采取改进措施后进入第二 阶段试车并经过 0.8 及 1.0 工况的短时试 车,试车后分解检查发现联焰管后第二段筒 身局部地区已隐约可见鼓起变形,而相应的 第一段筒身末端已逐渐外翻,局部气膜间隙 减小。可以预料如果在高负荷下长期运行, 位于联焰管后的第一道气 膜 必然 会逐步消 失,第二段火焰筒筒身必然会产生变形及鼓 包,甚至局部烧蚀。为比在第三阶段性能试 车前,对火焰筒及喷油嘴又采取了一些必要 的改进措施。这些措施是;

火焰筒联焰管设置了导流片,以引导更多的空气进入联焰管后的冷却缝隙中去。

孔(14一\$),并将原气膜的冷却孔 由 \$4 扩大为\$6(局部孔)。

3. 为防止联焰管后气膜间隙的消失, 除对气膜间隙返修校正外,并在相应的变形 区域焊铆了五只销钉。

4. 喷油嘴的双油路雾化角度由原90° 改为75°。

为了确定采取上述措施后的火焰筒壁温 分布情况,对火焰筒壁温及其温度应力进行 了测定。

二、试验方法

测温电偶是 \$\u00f8 0.5\$ 的镍铬一镍硅偶
2010 月微型点焊机焊在选定的测点处。引出
311 线用细瓷套管保护并用极薄的不锈钢皮将电
411 偶引出线及节点包容在内,见图1,2。

引出电偶线和铜导线的联结端置于冰瓶 中。用工业用巡迴检测仪记录。

测定壁温的火焰筒有两个,分别位于发 动机 3*及8*位置上。其测点布置见图 1a及

×

Į.

图1

ł

24 •

图 2

图 3a 8*火焰筒测点布置图

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

ì

1 b.

由图可知测点的布置主要是测定两个沿 火焰简轴向的壁温分布,一是联焰管后的轴 向壁温分布,另一是顶部(即定位销后)的 轴向壁温分布。此外还对联焰管本体及联焰 管后第一段简体末端(气膜间隙的内壁)处 壁温作了相应测定。

应该指出,由于火焰筒壁温测点较多, 再加上应力测量的引线,故相当部份的火焰 筒表面的换热状态受到影响,故其测得的壁 温是偏高的。

2. 通常对火焰筒壁温进行分析对比时,历来都是用直接测定的数据而不作任何修正处理。这在国内外有关这方面的研究报告均不例外。,而事实上当大气温度不同时, 在同样的运行工况及同一测点上,其壁温有 很大的差异。例如在北方的寒冷冬天与夏季 试车时壁温数据可以相差上百度之多。这样 在分析对比燃烧室的冷却状况及寿命估计时 就带来严重的失误。显然壁温和压气机的出 口空气温度有直接关系,而压气机的出口气 流温度和大气温度密切相关。在压气机和整 机试车的结果整理时,对一些参数包括压气 机出口气流温度均按标准大气状态进行折合 后才进行各项性能比较。因此作者认为在分 析壁温数据时同样应该引入折合概念,以便 排除大气温度变化的影响,这样的分析比较 才是可靠合理的。根据相似准则的推算,壁 温的折合值应为 $T_{WS} = T_W \frac{288}{T_1}^*$ 。式中 T_W 为 濒定值, T_1 为当时大气温度。

表 1

该机两组工况的实测实例

试验 日期 期	大 气 温 度 𝐾	测 <u>骤</u> 温 点 •K 亚	10		11		12		13		14	
			Tw	Tws	Tw	Tws	T₩	Tws	T_W	Tws	T _W	Tws
8.22	299	$n_1 = 7783$ $n_{1s} = 7645$	835	804	912	878	907	874	867	835	900	867
12.22	261	$n_1 = 7496$ $n_{1s} = 7871$	768	847	793	875	866	956	805	888	833	919
10.12	286	$n_1 = 8407$ $n_1 = 8436$	1045	1052	1154	1162	1174	1182	1135	1143	1137	1145
12.12	261	$n_1 = 8071$ $n_1 = 8474$	940	1037	1051	1160	1069	1180	1050	1159	1034	1141

表中n1为实际机械转速, n1s为折合转速。

由上表可清楚地看出大气温度对实测壁 温值的影响是十分严重的。以 n₁s=8474~ 8436 为例,它们相当于 0.8~0.9工况。在 冬季-12℃测得的值要比十月份测得值低近 100°。经用本修正公式后,它们之间的值就 十分接近了。

* 木公式是经大量试验总结出来的半经验公式。

三、测定结果及讨论

1. 火焰筒壁面的高温区

由表2可知,在 0.8~1.0 工况, 简体 第一段末端壁温已高达 1000℃。由此可见

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 2

火焰筒局部高温区的壁温值

联焰管		简体第-	一段末端	简体第二段		
3•	3*	3*	8*	3*	8*	
329	293	499	452	466	388	
801	755	915	847	715	664	
913	892	1013	956	827	770	
932	917	1001	975	853	792	
	联 3* 329 801 913 932	联始管 3* 3* 329 293 801 755 913 892 932 917	联始管 简体第- 3* 3* 3* 329 293 499 801 755 915 913 892 1013 932 917 1001	联始管 简体第一段末端 3* 3* 3* 8* 329 293 499 452 801 755 915 847 913 892 1013 956 932 917 1001 975	联始管 简体第一段末端 简体第 3* 3* 3* 8* 3* 329 293 499 452 466 801 755 915 847 715 913 892 1013 956 827 932 917 1001 975 853	

当第一段简体尾端(指位于联焰管下游)未 采取任何冷却措施(原冷 却气 膜被阻断) 时,长期处在高温及巨大的温度梯度下,必 然会发生变形皱折。分解检查也证实,该部 位金属色泽灰白,外观起皱折。因此该部位 应采取特殊的冷却结构措施以改善壁温。联 焰管本体的壁温对两个火焰筒而言是基本一 致的。这种联焰管端面有间隙,其前缘两侧 开有冷却空气槽。由于联焰管壁温的温度梯 度不大,因此上述壁温不会构成危及其可靠 性的因素。

联焰管下游的火焰筒第二段筒身的壁温 在冷却气膜存在的条件下,并非如想像的那 样高。3°火焰筒的壁温也仅达800~850℃。 对于 GH128 这种火焰筒材料而言,要比它 允许的工作温度低得多。只有当第一段简体 末端在高温下长期运行,逐步产生皱折变形 翘曲,使气膜间隙慢慢贴合,直至消失才能 使筒壁失去冷却气膜的保护,最终导至壁温 大幅度增加。因此保持气膜间隙的存在是防 止或延缓该区域产生鼓包,裂纹及金属过热 的至关重要的因素。

2. 火焰 筒背部 与联焰 管后轴 向璧温 分布

图 4 a、b、c、d、分别为两个火焰 筒的背 部及联焰管后壁温的轴向分布。当火焰筒各 段气膜间隙正常时, 背部的壁温分布较为均 匀,并略高于联焰管后的壁温。这是有些出 乎意料的。

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

这种情况可能和两股气流通道的流态有 关。背部的通道高度要比联焰管处小得多, 气流的局部流速较高。一方面局部流速高可 使对流换热增强,但另一方面却使该处的火 焰筒内外静压差降低,综合效果可能不如其 它部位。这或许是大多数航空发动机燃烧室 的联焰管在设计时均不直接设置在两火焰筒 相邻紧挨处的原因之一。同时也表明,当联 焰管流型较好,面气膜间隙保持稳定,则紧 挨联焰管下游方向的壁温不一定比其它部位 的壁温来得高。

此外由图可知,就轴向壁温分布而言, 最高壁温的位置并非一定在筒体第一,二段 上。通常可认为这里是燃烧反应区部位。但 实际上它与主燃区的设计方法有关。如果是 采用富油型主燃区,则最高壁温就可能不在 设计的主燃区上,而可能后移至掺混区。

3. 两个联焰管后壁温分布的对称性

从测定结果来看,两者的对称性较好。 以8*火焰筒,η=8345 的工况为例:

长端联焰管后的最高壁温为894℃

短端联焰管后的最高壁温为875℃

3^{*}火焰筒的长、短端联焰管后的最高壁 温分别为 820℃和886℃

4. 火焰筒的周向壁温温差

表 3 为 3*, 8* 火 焰 筒 筒 体的周向温 差。由于周向测点有限,所以这些数据有局 限性。

表 3

壁温 ℃ 符号	第一段	第二段	第三段	第四段	第五段
3*	130	50	50	30	115
8*		160	65	10	65

5. 起动及加速过程的壁温变化

图 5、6 为起动至慢车及慢车至 0.5 工 况的加速过程的壁温动态变化曲线。 (1) 起动至慢车:由图可知,3*火焰 筒上的儿个典型测点 1*、3*、15*、14* 它 们的升温率儿乎都是相同的,大致是每秒 8~9℃。在升温过程中未曾出现突升突降 趋势。只有联焰管的壁温略有起伏。在升速 时,壁温的上升主要在 n₁=800,即各火焰 筒联焰之后开始突升。大致在 n₁=2500 (即起动后第 27 秒左右),本机的慢车转 速为(3800~4000)壁温便趋向平缓。其中 联焰管本身的壁温起跳度大,以后的升温率 基本相同。由此可见,起动至慢车的壁温递 增过程是相当平缓的。

(2) 慢车至工况负荷的加速

该过程的升速时间约为 30 秒左右。而 壁温的最终平衡所需的时间达50秒左右。从 壁温的升温率来看,在前 30 秒内较高。其 中联焰管,联焰管后第二段简体及第一段简 体尼端壁温升温率最高达 9 ℃每秒。而其它 测点较低。当由慢车直推全工况时可推算得 知,其升温率大约为20℃每秒左右。这一温 升速率是相当高的,而且壁温的绝对值也很 高。

目前许多文献资料 在论 述火焰筒寿命 时,对起动过程予以高度重视,认为它是构 成火焰筒热冲击,形成巨大热应力的主要因 素之一。例如:固定式燃气轮机JB机组的燃 烧室翻修寿命的计算就认为它是起动次数的 函数。其它一些工业用燃气轮机燃烧室的寿 命估算上也有类同之处,这无疑是对的。不 过对固定式机组来说,往往把起动至慢车, 慢车至工况的加速过程合并,统称为起动。 每起动一次就推到额定或全负荷工况,其中 就很少变化。但像发动机台架试车每起动一 次就可能多次反复从慢车推至不同的工况。 对于这样的运行方式,如再采用笼统的起动 次数来修正燃烧室寿命的计算就不再合适。

由上述可知,从冷态起动点火至慢车, 火焰筒的温升率不高,特别是壁温的绝对值

图 5 起动至慢车过程壁温动态变化

18 6 慢车至0.5工况加速过程壁温动态变化

也很低。在这种温度下材料的许用应力基本 和常温状态一样,在这一过程中所产生的热 应力也远远低于其许用应力值,因此这一过 程对火焰筒翻修寿命很难构成大的影响。而 从慢车到工况的加速过程其热冲击是很猛烈 的,特别在加速过程中发生热悬挂,那么其 升温率及壁温可达到惊人的数值,由此产生 了巨大热应力,且因温度剧烈升高而导致材 料许用应力的大大降低,如此反复进行必将 大大缩短火焰筒的寿命,在某些部位就会产 牛鼓包,变形,裂纹直至局部过烧等故障。 因此作者认为对舰(船)用或工况经常 改变的燃气轮机燃烧室,在估算其翻修寿命 时如以加速次数米修正就更为合理。

四、结 论

1. 在分析整理壁温数据时,应考虑大 气温度对火焰筒壁温的重要影响。本文引入 在标准大气条件下测得壁温的折合计算值 $T_{WS} = T_W - \frac{288}{T_1}$ 。

2. 联始管后的第一段简体末端,由于

冷却气膜被联焰管所阻断,使该处壁温达到 很高数值,在短期内即能产生变形,皱折上 翻,造成第二段简体在该处的气膜间隙消 失,从而导至第二段简体局部地区壁温急剧 升高,产生鼓包、变形及裂纹等故障。因此 保持该处气膜间隙的存在是消除鼓包等故障 产生的关键问题。

3. 起动至慢车阶段,火焰筒壁温上升 平缓,温升率小,壁温绝对值也低。加速过 程温升率高,壁温绝对值也高。建议对舰 (船)用或工况负荷变化的燃气轮机燃烧室 的寿命估算中应用加速次数来代替起动次数。

参考文献

- 〔1〕 翁史烈等。燃气轮机性能分析。上海交通大学 出版社,1987
- (2) 金如山。航空燃气轮机燃烧室。字航出版社, 1988
- 〔3〕 张宝诚等。航空发动机试验技术。航空工业出版社,1989

An Experimental Study on Marine Gas Turbine Combustion Chamber Wall Temperatures

Tang Qianti

(Harbin Marine Boiler & Turbine Research Institute)

Abstract

The author proposes to use a reduced temperature of $T_{WS} = T_W \frac{288}{T_A}$ during the

analysis and assessment of wall temperature test results. Investigation results show that the first section end and the second section body of a can behind the crossover tube of an annular can combustion chamber have a vital influence on the chamber life. In these locations, swelling, warping and deformation are most liable to occure. They can be prevented by organizing a stable air-film cooling in above areas. It is also proposed to introduce an accelerating frequency as a correction factor during the evaluation of the combustion chamber life.

Key Words: gas turbine, combustion chamber, wall temperature, test